Download presentation
Presentation is loading. Please wait.
Published byLaurence Day Modified over 9 years ago
1
Advisor : Professor Guey-Sheng Liou Reporter : Ming-Chi Tsai Date : 2013/11/15 1 J. Mater. Chem. C, 2013, 1, 7623-7634, G. S. Liou* et al.
2
Introduction Experiment Results and Discussion Summary 2
3
3
4
4 Advantages : 1) Low cost 2) Solution processability 3) Flexibility 4) 3D stacking device Polyimide is one of the most suitable material for memory 1) Thermal stability 2) Chemical resistance 3) Mechanical strength
5
5 J. Mater. Chem. C, 2013, 1, 7623-7634, G. S. Liou* et al.
6
6 J. Am. Chem. Soc., 2006, 128, 8732-8733, En-Tang Kang* et al. 1 st sweep : 0~4V an abrupt increase in current observed at 3.2V (writing) 2 nd sweep : 0~4V (reading) 3 rd sweep : 0~-4V an abrupt decrease in current observed at -2.1V (erasing) 4 th sweep : 0~-4V OFF state 5 th sweep : 0~4V (rewriting) 6 th sweep : 0~4V (reading) 7 th sweep : 0~4V turn off external power 1 min device turned off (erasing) and (rewriting) 8 th sweep : (reading) Memory type : DRAM
7
7 Field induced CT theory 1.Conformational change 2.LUMO Energy level 3.Dipole moment 4.Large conjugation J. Am. Chem. Soc., 2006, 128, 8732-8733, En-Tang Kang* et al.
8
8
9
9 Polyimide synthesis One-step polycondensation Two-step polycondensation Shahram Mehdipour-Ataei *, et al., Iranian Polymer Journal, 2008, 17, 95-124
10
10
11
11 J. Appl. Phys., 2009, 105, 044501, En-Tang Kang* et al. 1 st sweep : 0~5V2.7V (writing) 2 nd sweep : 0~5V (reading) 3 rd sweep : 0~-2V-0.9V (erasing) 4 th sweep : 0~-2V OFF state 5 th sweep : 0~5V (rewriting) 6 th sweep : 0~5V (reading) 7 th sweep : 0~5V power off 1 min (erasing) and (rewriting) 8 th sweep : (reading) Memory type : DRAM 3 rd sweep : 0~-6V-0.9V (erasing) -2.3V (writing) Can be written bidirectionally
12
12 1 st sweep : 0~4V2.3V (writing) 2 nd sweep : 0~4V(reading) 3 rd sweep : 0~-4V(reading) nonerasable 4 th sweep : 0~-4Vpower off 4 mins (rewriting) 5 th sweep : 0~-4V(reading) 6 th sweep : 0~-4Vpower off 4 mins (rewriting) Memory type : SRAM Chem. Mater., 2009, 21, 3391–3399, En-Tang Kang* et al. Good stability when operated time
13
13 PI → PA DARM → SRAM J. Mater. Chem., 2012, 22, 14085, G. S. Liou* et al.
14
14 PA (SARM device) Block the occurring of back CT 1.Higher dipole moment 2. More nonplanar Lower switching on voltage -3.3V 1.Higher HOMO energy level 2.Fewer intermediate LUMOs Stability test Both PI and PA memory devices are stability when operating
15
15 Take APTT-6FDA for example 1 st sweep : 0~4V1.6V (writing) 2 nd sweep : 0~4V power off 10 mins (reading) 3 rd sweep : 0~-6V(reading & erasing) -3.2V 4 th sweep : 0~-6VOFF state 5 th sweep : 0~4V(rewriting) 6 th sweep : 0~-4Vpower off 10 mins (reading) Memory type : Flash memory Macromolecules, 2009, 42, 4456–4463, Mitsuru Ueda*, W. C. Chen* et al
16
16 J. Mater. Chem., 2012, 22, 14085, G. S. Liou* et al. Write Once Read Many times (WORM) 1.Nonerasable 2.Highest dipole moment
17
17 From Volatile to Nonvolatile by Perylene Diimide Composition in Random Copolymer Donor Acceptor The (PBI-0, PBI-1, PBI-2.5) and (PBI-5, PBI-10) devices provided volatile and nonvolatile WORM behavior, respectively. Macromolecules, 2012, 45, 4556, Mitsuru Ueda*, W. C. Chen*, C. L. Liu* et al.
18
18
19
19 3D structure (192 cells) Flexible 1.Devices structure and operating mechanism of the memory device is quite simple 2.Low processing cost 3.Show extremely high endurance during long term operation In future application of PI as a good memory device material
20
20
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.