Presentation is loading. Please wait.

Presentation is loading. Please wait.

SampleFK 111 232 371 481 591 6112 7232 8371 9392 10451 11461 12591 ChiMerge Discretization Statistical approach to Data Discretization Applies the Chi.

Similar presentations


Presentation on theme: "SampleFK 111 232 371 481 591 6112 7232 8371 9392 10451 11461 12591 ChiMerge Discretization Statistical approach to Data Discretization Applies the Chi."— Presentation transcript:

1 SampleFK 111 232 371 481 591 6112 7232 8371 9392 10451 11461 12591 ChiMerge Discretization Statistical approach to Data Discretization Applies the Chi Square method to determine the probability of similarity of data between two intervals.

2 SampleFK 111 232 371 481 591 6112 7232 8371 9392 10451 11461 12591 {0,2} {2,5} {5,7.5} {7.5,8.5} {8.5,10} {10,17} {17,30} {30,38} {38,42} {42,45.5} {45.5,52} {52,60} Intervals ChiMerge Discretization Example Sort and order the attributes that you want to group (in this example attribute F). Start with having every unique value in the attribute be in its own interval.

3 SampleFK 111 232 371 481 591 6112 7232 8371 9392 10451 11461 12591 SampleK=1K=2 3101 4101 total202 SampleK=1K=2 2011 3101 total112 ChiMerge Discretization Example Begin calculating the Chi Square test on every interval

4 SampleK=1K=2 3101 4101 total202 SampleK=1K=2 2011 3101 total112 E 11 = (1/2)*1 =.05 E 12 = (1/2)*1 =.05 E 21 = (1/2)*1 =.05 E 22 = (1/2)*1 =.05 E 11 = (1/2)*2 = 1 E 12 = (0/2)*2 = 0 E 21 = (1/2)*2 = 1 E 22 = (0/2)*2 = 0 X 2 = (0-.5) 2 /.5 + (0-.5) 2 /.5 + (0-.5) 2 /.5 + (0-.5) 2 /.5 = 2 X 2 = (1-1) 2 /1+(0-0) 2 /0+ (1-1) 2 /1+(0-0) 2 /0 = 0 Threshold.1 with df=1 from Chi square distribution chart merge if X 2 < 2.7024 ChiMerge Discretization Example

5 SampleFK 111 232 173 184 195 1378 2116 2237 9392 14510 14611 15912 {0,2} {2,5} {5,7.5} {7.5,8.5} {8.5,10} {10,17} {17,30} {30,38} {38,42} {42,45.5} {45.5,52} {52,60} Intervals Chi 2 2 2 0 0 2 0 2 2 2 0 0 ChiMerge Discretization Example Calculate all the Chi Square value for all intervals Merge the intervals with the smallest Chi values

6 SampleFK 111 232 371 481 591 6112 7232 8371 9392 10451 11461 12591 {0,2} {2,5} {5,10} {10,30} {30,38} {38,42} {42,60} Intervals 2 4 5 3 2 4 Chi 2 ChiMerge Discretization Example Repeat

7 SampleFK 111 232 371 481 591 6112 7232 8371 9392 10451 11461 12591 {0,5} {5,10} {10,30} {30,42} {42,60} Intervals 1.875 5 1.33 1.875 Chi 2 ChiMerge Discretization Example Again

8 SampleFK 111 232 173 184 195 6112 7232 8371 9392 10451 11461 12591 {0,5} {5,10} {10,30} {42,60} Intervals 1.875 3.93 Chi 2 ChiMerge Discretization Example Until

9 SampleFK 111 232 371 481 591 6112 7232 8371 9392 10451 11461 12591 {0,10} {10,30} {42,60} Intervals 2.72 3.93 Chi 2 ChiMerge Discretization Example There are no more intervals that can satisfy the Chi Square test.


Download ppt "SampleFK 111 232 371 481 591 6112 7232 8371 9392 10451 11461 12591 ChiMerge Discretization Statistical approach to Data Discretization Applies the Chi."

Similar presentations


Ads by Google