Presentation is loading. Please wait.

Presentation is loading. Please wait.

Light trapping with particle plasmons Kylie Catchpole 1,2, Fiona Beck 2 and Albert Polman 1 1 Center for Nanophotonics, FOM Institute AMOLF Amsterdam,

Similar presentations


Presentation on theme: "Light trapping with particle plasmons Kylie Catchpole 1,2, Fiona Beck 2 and Albert Polman 1 1 Center for Nanophotonics, FOM Institute AMOLF Amsterdam,"— Presentation transcript:

1 Light trapping with particle plasmons Kylie Catchpole 1,2, Fiona Beck 2 and Albert Polman 1 1 Center for Nanophotonics, FOM Institute AMOLF Amsterdam, The Netherlands 2 Australian National University Canberra, Australia

2 Poor absorption below the bandgap solar spectrum Si solar cell EgEg Indirect bandgap Semiconductor (Si): poor absorption just below the bandgap  thick cell required

3 Solution: light trapping Goal: Increased efficiency (IR response) and/or Reduced thickness (=cost) f subs f f air

4 Plasmon-enhanced photocurrent: 5 examples Nakayama et al., APL 93, 121904 (2008) GaAs Stuart and Hall, APL 69, 2327 (1996) SOI Derkacs et al., APL 89, 93103 (2006) a-Si Si SOI Pillai et al., JAP 101, 93105 (2007) Schaadt et al., APL 86, 63106 (2005) Si

5 Plasmon-enhanced photocurrent: 5 examples Nakayama et al., APL 93, 121904 (2008) GaAs Stuart and Hall, APL 69, 2327 (1996) SOI Derkacs et al., APL 89, 93103 (2006) a-Si Si SOI Pillai et al., JAP 101, 93105 (2007) Schaadt et al., APL 86, 63106 (2005) Si What are the physical principles and limitations

6 Light scattering E p  p p Rayleigh scattering from point dipole Scattering from point dipole above a substrate Preferential scattering into high-index substrate See, e.g.: J. Mertz, JOSA-B 17, 1906 (2000) 4 % 96 %

7 (a) (b) Absorption ~ r 3 Scattering ~ r 6 Metal nanoparticle scattering Scattering vs Ohmic losses Albedo  1 for D > 100 nm Ag Resonant scattering Plasmon resonance:  = -2 m () Albedo

8 Metal nanoparticle scattering Cross section > 1 All light captured and scattered into substrate (=AR coating)

9 Resonance tunable by dielectric environment Ag, D=100 nm Si 3 N 4 (n=2.00) Si (n=3.5) D Q D Q O H Optics Express (2008), in press

10 From point dipole to particle plasmon Fraction scattered into substrate highest for cylinder & hemisphere: Strongest near-field coupling Tradeoff: larger size  larger albedo but lower coupling 96 % 0 FDTD calculations Appl. Phys. Lett. 93, 191113 (2008)

11 Maximum path length enhancement Highest path length enhancement for cylinder and hemisphere Geometric series f subs f f air Appl. Phys. Lett. 93, 191113 (2008) Fraction scattered into substrate Path length enhancement 30 x (A=0.95) (A=0.90)

12 Scattering cross-section with dielectric spacer σ scat normalized to particle area Larger spacing: Interference in driving field But: lower coupling fraction (+ local density of states variation modifies albedo) 30 nm 10 nm D Q Appl. Phys. Lett. 93, 191113 (2008) tot sub

13 Thermal SiO 2 d ave = 135 nm f = 26% n=1.46 Ag nanoparticle formation on SiO 2 /Si 3 N 4 /TiO 2 on Si LPCVD Si 3 N 4 d ave = 220 nm f = 28% n=2.00 APCVD TiO 2 d ave = 215 nm f = 30% n=2.50 Thermal evaporation of 14 nm Ag + 300 °C anneal

14 c-Si 100 μm Integrating sphere 30 nm SiO 2 Si 3 N 4 TiO 2 Optical absorption (1-R-T) in Si wafers Si 3 N 4 TiO 2 SiO 2 Si 3 N 4 TiO 2 SiO 2 Ref. Strongly enhanced near-IR absorption egineered by dielectric spacer AR effect, interference for shorter wavelength + redshift

15 Photocurrent, external quantum efficiency Red-shifted EQE enhancement with refractive index of underlying dielectric Decrease at short wavelength due to phase shift Small increase at long wavelength for TiO 2 Si 3 N 4 TiO 2 SiO 2 front back

16 Relative photocurrent, EQE enhancement Si 3 N 4 TiO 2 SiO 2 Si 3 N 4 TiO 2 SiO 2 front back TiO 2 coated Si: EQE enhancement 2.7 fold at λ = 1050 nm Note: particle size and distribution are not optimized

17 Design principles for plasmon-enhanced solar cells 1) Metal nanoparticles  scat > 1 2) Coverage ~ 10-20 % required 3) D>100 nm  albedo > 0.95 i.e. Ohmic losses < 5% 4) Angular distribution (=path length) increased 5) Coupling fraction f = 0.96 for point dipole 6) f reduces for larger particle size 7)  scat increases with spacer thickness 8) f decreases with spacer thickness Design parameter optimization Include: inter-particle coupling

18 Appl. Phys. Lett. 93, 191113 (2008) For details/references visit: www.erbium.nl VACANCIES in nano-photovoltaics see: www.amolf.nl

19 Flexible rubber on thin glass Conform to substrate bow and roughness No stamp damage due to particles PDMS Stamp Thin glass PDMS stamp (6”) on 200 µm AF- 45 glass 1  m Full-wafer soft nano-imprint Marc Verschuuren, Hans van Sprang Spring MRS 2007, 1002-N03-05 Substrate Conformal Imprint Lithography

20 Angular dependence of scattered light Increased power around critical angle for dipole compared to isotropic Lambertian less oblique path f air W d av Dipole d av ~1.5 Lambertian d av =2 K.R Catchpole and A. Polman, APL (2008)

21 Tadeoff between cross section and incoupling Optics Express (2008), in press Point dipole


Download ppt "Light trapping with particle plasmons Kylie Catchpole 1,2, Fiona Beck 2 and Albert Polman 1 1 Center for Nanophotonics, FOM Institute AMOLF Amsterdam,"

Similar presentations


Ads by Google