Download presentation
Published byJudith Malone Modified over 9 years ago
1
Wide-band Receiver Architecture with Flexible Blocker Filtering Techniques
AUTHORS: Christian IZQUIERDO Franck MONTAUDON Philippe CATHELIN Andreas KAISER 1 1 1 1 1 1 1 1 1 1 1 1 1
2
Outline Introduction BB-RF Feedback Receiver
Negative Feedback Architectures Low pass filter configuration High pass filter configuration Positive Feedback Architecture Stability Analysis Noise Figure Conclusions 2 2 2 2 2
3
Introduction Software Defined Radio → Multi-standard application
Wide-band LNA + Mixer + Configurable BB filter → Multi-standard application * Ref: ISSCC2006 – R. Bagheri, “An 800MHz to 5GHz SDR receiver in 90nm CMOS” SAW GSM Wide-band LNA SAW LTE SAW WCDMA External components to obtain good linearity performances (specially in cellular application) → Duplexer + SAW Filter Replace figure
4
Typical Multi-standard RX-TX
On-chip On-chip circuit Too many SAW filters SAW Filter: Expensive Big area 2-3dB signal loss 1 Band = 1 SAW Filter Focus on: Relaxing RF filter requirements Souligner le recepteur en etude * Ref: ISSCC2009 – T. Sowlati – Skyworks Solutions
5
State of the art – On-chip interferer rejection
Translation feed-forward loop receiver Linearity enhancement scheme with IM3 cancellation Carrier signal Blockers signals * Ref: JSSC2007 – H. Darabi * Ref: ISSCC2008 – E. Keehr Requirement of a very high linearity LNA!!! 5 5 5 5 5 5 5
6
BB-RF Feedback Receiver
I/Q Path Wide-band Mixer Ampli BB Filter ADC LNA (Gmix) (Gamp) GLNA FLO gOTA Feedback Feedback Feedback Current Mixer (Gmix) Filter (Gfil) I/Q Path Idea: Translate BB filtering to RF input thanks to the feedback RF Filtering at the LNA input Blocker signals are attenuated
7
Model of BB-RF Negative Feedback Receiver
G: forward voltage gain gR: feedback loop transconductance gain RF Filtering at the LNA input Matching to the antenna impedance in-band. Mismatching out-band RF Central frequency = FLO
8
Low Pass filter configuration – Theorical Analysis
fRF Blocker signal Carrier signal fRF Mixer Ampli (Gmix) (Gamp) Ampli Feedback V / I Mixer(Gmix) FLO LNA gOTA Voie I/Q LPF I/Q Path - + fLO fBB fRF LPF Open loop: ZIN=ZLNA > ZANT Close loop: ZIN(fLO) = ZANT Input Impedance Mathematical expression
9
LPF Configuration – Simulation results
Input Impedance Input Voltage ZIN=50Ω ZLNA=1KΩ Over voltage Matching in-band (ZIN=50Ω) and mismatching out-band (ZIN>50Ω) Over voltage for out-of-band signals in LNA input
10
High Pass filter configuration – Theorical Analysis
fRF Blocker signal Carrier signal Mixer Ampli (Gmix) (Gamp) Ampli Feedback V / I Mixer(Gmix) FLO LNA gOTA Voie I/Q HPF I/Q Path - + fRF fLO fBB HPF fRF Open loop: ZIN=ZLNA > ZANT (Image Frequency) Close loop: ZIN(fLO) = ZANT Input Impedance Mathematical expression
11
HPF Configuration – Simulation results
Input Impedance Input Voltage ZLNA=1KΩ ZIN=50Ω Att=2.5dB Matching in-band (ZIN=50Ω) and mismatching out-band (ZIN<50Ω) Image Frequency of first mixer superposed with BB signal. Attenuation is not good (<3dB) titre
12
Positive Feedback Architecture
fRF Blocker signal Carrier signal fRF Mixer Ampli LNA (Gmix) (Gamp) Ampli Feedback V / I Mixer(Gmix) FLO GLNA gOTA Voie I/Q LPF I/Q Path + fLO fBB LPF fRF Open loop: ZIN=ZLNA < ZANT In-band signal enhanced Input Impedance Mathematical expression: FLO configurabilite, fc selectivite
13
Results simulation Input Impedance Input Voltage
ZLNA=10Ω ZLNA=3Ω Att=19dB Matching in-band (ZIN=50Ω) and mismatching out-band (ZIN<50Ω) Good attenuation. It depends of initial ZLNA
14
Stability Analysis Feed-back Gain: Stability condition For f=fLO:
(-1,0) Stability condition For f=fLO: Stable for S1 Unstable for S2
15
A B Noise Figure A: forward voltage gain B: feedback loop voltage gain
XS X1 XA XB X2 XO A B + A: forward voltage gain B: feedback loop voltage gain FA: NF of forward path FB: NF of feedback loop Forward path contribution Feedback path contribution
16
Application Example For ZLNA=3:
If A=36dB gR=4.9mS, B=gR*ZIN(fLO) = 0.245 With these values, S=-0.88>-1 System is stable!!! NFA B NFB NFCL 3.4 0.245 4.7 3.52 6.9 3.75 10.4 4.36 13.2 5.23 NFCL to be compared to NF of SAW+ Typical Receiver
17
Conclusions BB-RF Positive Feedback Receiver Channel Filtering in RF
Good blocker rejection (19 dB) Adjustable BW and center frequency Attenuation depending on Design Trade-offs: ZLNA, NF and Stability Though not yet sufficient to remove the SAW filter, this technique Relaxes filtering requirements Allows more compact and less expensive receivers 17 17 17 17 17
18
Thank you!!!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.