Presentation is loading. Please wait.

Presentation is loading. Please wait.

NO.11 Chapter 6 First-Order Circuit 一阶电路 1.RC and RL Circuits 2.Initial Conditions 3.First-order Circuit Zero-input Response 4.First-order Circuit Zero-state.

Similar presentations


Presentation on theme: "NO.11 Chapter 6 First-Order Circuit 一阶电路 1.RC and RL Circuits 2.Initial Conditions 3.First-order Circuit Zero-input Response 4.First-order Circuit Zero-state."— Presentation transcript:

1

2 NO.11 Chapter 6 First-Order Circuit 一阶电路

3 1.RC and RL Circuits 2.Initial Conditions 3.First-order Circuit Zero-input Response 4.First-order Circuit Zero-state Response 5.First-order Circuit Complete Response 6.Three quantities in finding the response 7.Applications Items:

4 Introduction 换路:即电路变化 C t = 0 UsUs R K + – uCuC RC Circuits t = 0 + – uRuR UsUs R K RLRL R Circuits + – uRuR UsUs R RLRL

5 Before K is switched on i = 0, u C = 0 i = 0, u C = U s (I) Dynamic circuit i + – uCuC UsUs R C Introduction to dynamic circuits Steady state analysis K + – uCuC UsUs R C i t = 0 K is switched on long time

6 K + – uCuC UsUs R C i Initial state Transient state Steady state t1t1 USUS ucuc t 0 ? i Response of a Circuit Transient response of an RL or RC circuit is – Behavior when voltage or current source are suddenly applied to or removed from the circuit due to switching. – Temporary behavior Dynamic Circuit : circuit which containing energy-store elements (L, C). 过渡过程

7 (II) Why the circuit produce transient process 1. The circuit containing L and C elements Inductor current cannot change instantaneously Capacitor voltage cannot change instantaneously 2. voltage or current source are suddenly applied to or removed from the circuit switching

8 动态电路及过渡过程 动态电路 dynamic circuit 特点:当改变原 来的工作状态时会有过渡过程。(瞬态) 原稳态 开关动作 接入 ( 去掉 ) 电源 换路 过渡过程 新稳态 Transient state

9 研究动态电路基本规律的意义: 认识、掌握过渡过程 ( 暂态过程 transient state) 的现象和规律。 动态电路的基本规律反映出一般动态 系统(机械、自动控制系统等)的普遍规 律。

10 FORMULATING RC AND RL CIRCUIT EQUATIONS A first-order circuit is characterized by a first- order differential equation. kk

11 6-1 Initial conditions of the circuits Initial conditions : The values of voltages and currents and the derivatives at t = 0+: 1. Initial conditions : The values of voltages and currents and the derivatives at t = 0+: 0 t 确定微分常数时须利用电路初始条件 f(0 + ) just prior to switchingjust after switching Switching at t=0

12 2. Switching rule 换路规则: At the instant of switching, if the current flowing through the capacitance is finite, the charges remain unchanged; if the voltage across the inductance is finite, the current flowing through the inductance remains unchanged. u C (0 + )=u C (0 - ) i L (0 + )=i L (0 - ) Note : Only the voltage on a capacitor and the current through an inductor cannot chang abruptly 。

13 3. 电路中其他初始电压、电流的一般求解方法: 具体求法是: 画出 t=0 + 电路:在该电路中若 u C (0 + )= u C (0 - )= U S , 电容用一个电压源 U S 代替,若 u C (0 + )= 0 则电容用 a short circuit 代替。若 i L (0 + )= i L (0 - )=I S ,电感用一 个电流源 I S 代替,若 i L (0 + )= 0 则电感作 an open circuit 。 由 t=0 + 电路来求得 电阻电路

14 S(t=0) + - + - + - t 0- 0+ 5A10V 0 5A 0010V 5A10V 0 0 -10A -10V 15A Example 1

15 Assume Close the switch S when t=0. Find i 1 (0 + ) 、 i 2 (0 + ) 、 i 3 (0 + ) 、 u c (0 + ) 、 u L (0 + ). example2 = = 0 t=0 + circuit

16 求初始值的一般步骤: (1) 根据 t=0 - 时的电路,求出 u C (0 - ) 及 i L (0 - ) 。 (2) 由换路定则 : u C (0 + ) = u C (0 - ), i L (0 + ) = i L (0 - ) 。 (3) 作出 t=0 + 时的等效电路,并在图上标出各待 求量。 (4) 由 t=0 + 等效电路,求出各待求量的初始值。

17 §6-2 Zero-input response of first-order RC circuits 一阶 RC 电路的零输入响应 Assume that at time t=0, shut the key K, and u c (0 - )=U 0 Find : u c (t) , i c (t) ( t≥0 ) (t=0) Capacitor Discharging 即:放电过程 discharge Solution: Zero input response : The behavior (in terms of the voltages and currents) of the circuit itself, with no external sources of excitation.

18 Solution: -u R +u c =0 By KVL: ∵ u R =i R, Eq.(7-1) is a homogeneous equation because the right side is zero. Eq.(7-1) A solution in the form of an exponential u c =Ke st t≥0 Eq.(7-2) where K and s are constants to be determined.

19 characteristic equation Substituting the trial solution into Eq.(7-1) yields OR Eq.(7-3) R T Cs+1=0 a single root of the characteristic equation zero -input response of the RC circuit: ∵ u c (0 + )=U 0

20 The time constant 时间常数 τ=RC the zero-input response: τ 小:过渡过程短 τ 大:过渡过程长 3  ~ 5  It is customary to assume that it takes 3  ~ 5  for the circuit to reach the new steady state. 0.368U 0 k (t=0) (t=0) u c (t) U0U0

21 t≥0 i (t=0)

22 Note: The key to working with a source-free RC circuit is finding: (1)The initial voltage u(0)=U 0 across the capacitor; (2)The time constant τ;

23 Example 7.1 Let u c (0-)=15V. Find u C,u x, and i x for t>0. uCuC uxux

24 R0R0 R L U0U0 uLuL 1 2 S(t=0) i §6-3 Zero-input response of first-order RL circuits Assume : S 2 Find : i L (t), t≥0

25 From the initial conditions : Let i = Ae pt Then (Lp+R)e pt =0Lp+R=0 Hence : =

26 Then : R0R0 R L U0U0 uLuL 12 S(t=0) i

27 Curve : t O i L, u L -RI 0 I0I0 i L (t) u L (t)

28 §6-2 and §6-3 Zero-input Response (t=0) Capacitor Discharging u c (0 - )=U 0 K(t=0) i L uLuL R τ=RC

29 为什么RC的 τ 与R成正比,LC的却成反比? 因为 RC 的 i 0 =U 0 /R, 此时R的耗能为 U 2 0 / R, 与R成反比,即说明R越大,过渡时 间持续越长, τ 与R成正比; 而 LC 的 i 0 = I 0, 此时R的耗能为I 2 0 R, 与 R成正比,即说明R越大,过渡时间持 续越短, τ 与R成反比. K(t=0) i L uLuL R

30 R0R0 R L U0U0 uLuL 1 2 S(t=0) i Zero-input response of first-order RL circuits Assume : S 2 Find : i L (t), u R (t), t≥0 Multisim

31 第9周周一 期中考试 范围 : 1-6 章 方式 : 闭卷 ( 英文试题 )

32 例 7.3.2 下图是一台 300kw 汽轮发电机的励磁回路。已知 R=0.189Ω, L=0.398H, U=35V ,电压表量程为 50V ,内阻 R V =5kΩ 。 t=0 时开关 S 打开(设 S 打开前电路已稳定). 求: 1 、 i(0 + ) 2 、 τ ( t≥0 ) 3 、 i 和 u v ( t≥0 ) 4 、 S 刚断开时的 u v (0 + ) Multisim τ=L/R=79.6μs, D _ + i(0-)=i(0+)=185A, 解:解: t=0

33 §6-4 First-order Circuit Complete Response 全响应

34 UsUs For t ≥0  If u c (0)=0, it is Zero-State Response. 零状态响应 u c (t) t=0 1. Complete Response of a RC Circuit

35 How to find the complete response of the RC circuit ?  If u c (0) ≠ 0, it is Complete Response. 全响应 UsUs For t ≥0 u c (t) t=0

36 divide solution v(t) into two components: The homogeneous solution (natural response) is the general solution of Eq.1 when the input is set to zero. total particular homogeneous

37 The particular solution ( forced response) : seek a particular solution of the equation t ≥0 Now combining the forced and natural responses, we obtain Setting U F (t)=U S meets this condition.

38 UsUs  Zero-State Response : u c (0)=0 u c (t) t=0 ∴ K= -U S using the initial condition:

39 O USUS t u C (t) i(t) u C (t), i(t) 即:充电过程 charge

40  不论 R 、 C 如何,电源充 电能量的一半被 R 吸收, 一半转换为电容的电场能 量,充电效率为 50 %。

41 UsUs u(t) t=0 ∴ K= U 0 -U S  Complete Response : u c (0)=U 0 The complete response of the RC circuit: u c (0)=U 0

42 Complete Response : Step response of first-order RC circuit U0U0 USUS

43 Note: 全响应 = 零输入响应 + 零状态响应 Zero-input responseZero-State Response The superposition principle u c (t) USUS t=0 u c (0)=U 0

44 The RL circuit is the dual of the RC circuit: L ISIS The complete response of the RL circuit is 2. Complete Response of a RL Circuit

45 +_+_ u c (t) 30Ω 20Ω t=0 K I S =1A 0.5F Example1 : Example1 : The switch is opened at t=0. u c (0) =5V, Find u C (t) . (t≥0) icic 方法一:(经典法)求解微分方程

46 Example1 : Example1 : The switch is opened at t=0. u c (0) =5V, Find u C (t) . (t≥0) t≥0 时的电路 方法二: 先利用戴维南等效, 再套全响应公式 icic

47 Solution: Zero-input: Zero-state: Complete response:

48 3 、 Step function 阶跃函数 1 The unit step function 单位阶跃激励 : ε(t) t 0 The unit step function ε (t) is 0 for negative values of t and 1 for positive values of t.

49  延迟单位阶跃信号

50 We use the step function to represent an abrupt change in voltage or current, for example, the voltage May be expressed : U A ε (t-t 0 ) abab Equivalent circuit: abab UAUA = t=t 0

51 30Ω +_+_ u c (t) 20Ω t=0 K I S 1A 0.5F Example 1: Example 1: The switch is opened at t=0. u c (0) =5V, Find u C (t), (t≥0)

52 Solution: Zero-input: Zero-state: Complete response:

53 usus Example 2: Find u C (t), for t≥0. Solution : 方法一 : 分段分析 t o usus 10V 1S u c (0) =0V,

54 usus t o usus 10V 1S t≥1s U C (1) u c (0) =0V,

55 1) 用分段函数表示

56 方法二 : 用阶跃函数表示 usus t o usus 10V 1S t o t o u ´ u "

57 t o u 10V 1S1S usus According to the superposition principle :

58

59 s(t=0) Determine the expressions for u C (t) and i(t). (t ≥0 ) Example : i(t) 0.1F

60 50/7V 10/7Ω uCuC t≥0t≥0 i 0.1F s(t=0)

61 The question is changed to ‘Determine i(t)’. (t ≥0 ) Example : i(t) 0.1F Is there another way?

62 The complete response of a first-order circuits depends on three quantities: 1.The initial value of state variable(U 0+ or I 0+ ) 2.The final value of state variable(U S or I S ) 3.The time constant  (RC or GL) f(0 + ) f( ∞ ) 三要素法 Note:

63 (1) Get f(0+) --- use 0+ equivalent circuit (2) Get f(  )---use  equivalent circuit (3) Get τ---calculate the equivalent resistance R, τ=RC or L/ R Then, Note: method of “three quantities” can be applied in step response on any branch of First-order circuit. 6. Method of “three quantities” (method 3)

64 Solution : Using the method of “three quantities” (1) u c (0+), i(0+) s(t=0) Determine the expressions for u C (t) and i(t). (t ≥0 ) Example : i(t) 0.1F ? ×

65 Find i(0+): s(t=0) i 0.1F i(0+): Equivalent circuit at t=0+ 5V

66 s(t=0) (2) u c (∞), i(∞) 10V 2Ω 5Ω u C (∞) i(∞)

67 s(t=0) (3) τ (t ≥0) R=2//5=10/7Ω R 2Ω 5Ω

68 4、4、 s(t=0) i (t≥0)

69 s(t=0) i (t≥0)

70  How to get initial value f(0+) ? 1.the capacitor voltage and inductor current are always continuous in some conditions. ( 换路定则 ) Vc(0 + )=Vc(0 - ); I L (0 + )=I L (0 - ) 2. ---use 0+ equivalent circuit. C: substituted by voltage source; L: substituted by current source. 3. Find f(0+) in the above DC circuit. Note:

71  How to get final value f(∞) ?  How to get time constant τ? The key point is to get the equivalent resistance R. R is the Thévenin equivalent resistance “seen” by the inductor (or the capacitor) Use ∞ equivalent circuit(stead state) to get f(∞). C: open circuit; L: short circuit.

72 Example 2: Example 2: The switch is closed at t=0. i L (0) =2A, Find i L (t), u L (t), i (t) (t≥0) Solution : “Three quantities”

73 (1) Find f(0 + ):

74 When t→ ∞ (2) Find f(∞ ):

75 (3)Find : R a b 外加电源法

76 (4)According to:

77 §6-5 Applications Differential Circuit and Integral Circuit

78 1 、 Differential Circuit o t uiui /V 10 t1t1 t2t2 tPtP o t - 10 uCuC u O /V 10  <<t P 微分电路的条件 (1)  << t P ; (2) u R as output R C uiui uOuO uCuC i Example:

79 2. Integral Circuit o t uiui /V 10 t1t1 t2t2 t o u O /V tPtP  >> t P C R uiui uOuO uRuR i 积分电路的条件 (1)  >> t P ; (2) u C as output

80 §6-6 一阶电路的冲击响应 (不讲)

81 作业 11 : 《电路》 : P150 6-1 《 Fundamentals of Electric Circuits 》 : P284 7.5 P286 7.20

82 作业 12 : 《 Fundamentals of Electric Circuits 》 : P288-289 7.36 7.43 《电路》 P155 6-23

83 作业 13: 《电路》 P152-155 6-8 6-21 《 Fundamentals of Electric Circuits 》 : P291 7.55


Download ppt "NO.11 Chapter 6 First-Order Circuit 一阶电路 1.RC and RL Circuits 2.Initial Conditions 3.First-order Circuit Zero-input Response 4.First-order Circuit Zero-state."

Similar presentations


Ads by Google