Presentation is loading. Please wait.

Presentation is loading. Please wait.

Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Similar presentations


Presentation on theme: "Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang."— Presentation transcript:

1 Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 1, Thomas Kaminski 3, Ralf Giering 3 & Heinrich Widmann 1 European Geosciences Union, Nice, 27 th April 2004 FastOpt 12 3

2 Overview CCDAS set-up Calculation and propagation of uncertainties Data fit Global results Summary

3 Carbon Cycle Data Assimilation System (CCDAS) set-up 2-stage-assimilation: 1.AVHRR data (Knorr, 2000) 2.Atm. CO 2 data Background fluxes: 1.Fossil emissions (Marland et al., 2001 und Andres et al., 1996) 2.Ocean CO 2 (Takahashi et al., 1999 und Le Quéré et al., 2000) 3.Land-use (Houghton et al., 1990) Transport Model TM2 (Heimann, 1995)

4 Calibration Step Flow of information in CCDAS. Oval boxes represent the various quantities. Rectangular boxes denote mappings between these fields.

5 Prognostic Step Oval boxes represent the various quantities. Rectangular boxes denote mappings between these fields.

6 Methodology Minimize cost function such as (Bayesian form): where - is a model mapping parameters to observable quantities - is a set of observations - error covariance matrix  need of (adjoint of the model)

7 Calculation of uncertainties Error covariance of parameters = inverse Hessian Covariance (uncertainties) of prognostic quantities

8 Figure from Tarantola, 1987 Gradient Method 1 st derivative (gradient) of J (p) to model parameters p: yields direction of steepest descent. cost function J (p) Model parameter space (p) 2 nd derivative (Hessian) of J (p): yields curvature of J. Approximates covariance of parameters.

9 Data fit

10 Global Growth Rate Calculated as: observed growth rate optimised modeled growth rate Atmospheric CO 2 growth rate

11 Parameters I 3 PFT specific parameters (J max, J max /V max and  ) 18 global parameters 57 parameters in all plus 1 initial value (offset) ParamInitialPredictedPrior unc. (%)Unc. Reduction (%) fautleaf c-cost Q 10 (slow)  (fast) 0.4 1.25 1.5 0.24 1.27 1.35 1.62 2.5 0.5 70 75 39 1 72 78  (TrEv)  (TrDec)  (TmpDec)  (EvCn)  (DecCn)  (C4Gr)  (Crop) 1.0 1.44 0.35 2.48 0.92 0.73 1.56 3.36 25 78 95 62 95 91 90 1

12 Parameters II Relative Error Reduction

13 Carbon Balance latitude N *from Valentini et al. (2000) and others Euroflux (1-26) and other eddy covariance sites* net carbon flux 1980-2000 gC / (m 2 year)

14 Posterior uncertainty in net flux Uncertainty in net carbon flux 1980-2000 gC / (m 2 year)

15 Summary CCDAS with 58 parameters can fit 20 years of CO 2 concentration data. Significant reduction of uncertainty for ~15 parameters. A tool to test model with uncertain parameters and to deliver a posterior uncertainties on parameters and prognostics. Model is developed further within the system  a low resolution version of the biosphere model is available (~20 times faster). Adjoint, tangent linear and Hessian code is derived by automatic differentiation (TAF)  extremely easy update of derivative code for improved model versions.


Download ppt "Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang."

Similar presentations


Ads by Google