Download presentation
Presentation is loading. Please wait.
Published byMildred James Modified over 9 years ago
1
Lecture 6: DFT XILIANG LUO 2014/10
2
Periodic Sequence Discrete Fourier Series For a sequence with period N, we only need N DFS coefs
3
Discrete Fourier Series
4
DFS Synthesis Analysis
5
Example DFS of periodic impulse
6
DFS Properties Linearity: Shift:
7
DFS Properties Duality: Periodic Convolution:
8
DTFT of Periodic Signals
9
Sampling Fourier Transform Sample the DTFT of an aperiodic sequence: Let the samples be the DFS coefficients:
10
Sampling Fourier Transform DTFT definition: Synthesized sequence:
11
Sampling Fourier Transform Synthesized sequence:
12
Sampling Fourier Transform Sampling the DTFT of the above sequence with N=12, 7
13
Discrete Fourier Transform For a finite-length sequence, we can do the periodic extension: or DFT definition:
14
Discrete Fourier Transform DFT is just sampling the unit-circle of the DTFT of x[n]
15
DFT Properties Linearity Circular shift of a sequence Duality
16
DFT Properties Circular convolution
17
Compute Linear Convolution In DSP, we often need to compute the linear convolution of two sequences. Considering the efficient algorithms available for DFT, i.e. FFT, we typically follow the following steps:
18
Compute Linear Convolution Linear convolution of two finite-length sequences of length L & P: How about circular convolution using length N=L+P-1?
19
Compute Linear Convolution Sampling DTFT of x[n] as DFS: one period
20
Compute Linear Convolution
21
DFT/IDFT linear conv w/ aliasing
22
Compute Linear Convolution Circular convolution becomes linear convolution!
23
LTI System Implementation
24
Block convolution
25
LTI System Implementation
26
Overlap-Add Method
27
Overlap-Save Method P-point impulse response: h[n] L-point sequence: x[n] L > P We can perform an L-point circular convolution as: Observation: starting from sample: P-1, y[n] corresponds to linear convolution!
28
Overlap-Save Method
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.