Download presentation
Presentation is loading. Please wait.
Published byEthelbert Murphy Modified over 9 years ago
1
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A Hybrid Supervised ANN for Classification and Data Visualization Chee Siong Teh and Md. Sarwar Zahan Tapan Presented by Jun-Yi Wu 2010/09/28 2008 IEEE
2
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 2 Outlines Motivation Objectives Methodology Experiments Conclusions Comments
3
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 3 Motivation ANN usually do not support supervised classification and data visualization simultaneously.
4
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 4 Objectives To propose a novel hybrid supervised ANN of Learning Vector Quantization(LVQ) with Adaptive Coordinate (AC) by hybridizing LVQ and modified AC approach.
5
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology A.Learning Vector Quantization(LVQ) B.Adaptive Coordinates(AC) C.Modified adaptation criteria of AC D.LVQ with AC Alogorithm E.Cost function of LVQ with AC 5
6
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology Learning Vector Quantization(LVQ) 6
7
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology Adaptive Coordinates(AC) 7
8
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology Modified adaptation criteria of AC The proposed modification of AC is to ensure the integration of AC and LVQ enables the proposed method with data visualization. 8
9
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology LVQ with AC Alogorithm 9
10
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology Cost function of LVQ with AC 10
11
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments A.Visualization evaluation using a 3D synthetic data set B.Visualization evaluation using WBC data set C.Visualization evaluation using Wine data set D.Quantitative evaluation of LVQ with AC’s visualization E.Classification evaluation F.Network utilization and dead neuron 11
12
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments Visualization evaluation using a 3D synthetic data set 12
13
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments 13
14
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments Visualization evaluation using WBC data set 141 4
15
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments Visualization evaluation using Wine data set 15
16
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments Quantitative evaluation of LVQ with AC’s visualization 16
17
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments Classification evaluation 17
18
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments Network utilization and dead neuron 18
19
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Conclusion Empirical studies show that LVQwithAC be able to provide promising classification simultaneously with effective visualizations. 19
20
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 20 Comments Advantages ─ map. Applications ─ Classification
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.