Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Dr. Scott Schaefer Fractals and Iterated Affine Transformations.

Similar presentations


Presentation on theme: "1 Dr. Scott Schaefer Fractals and Iterated Affine Transformations."— Presentation transcript:

1 1 Dr. Scott Schaefer Fractals and Iterated Affine Transformations

2 2/193 What are Fractals?

3 3/193 What are Fractals?

4 4/193 What are Fractals?

5 5/193 What are Fractals?

6 6/193 What are Fractals? Recursion made visible A self-similar shape created from a set of contractive transformations

7 7/193 Contractive Transformations A transformation F(X) is contractive if, for all compact sets Transformations on sets? Distance between sets?

8 8/193 Transformations on Sets Given a transformation F(x), In other words, F(X) means apply the transformation to each point in the set X

9 9/193 Hausdorff Distance

10 10/193 Hausdorff Distance

11 11/193 Hausdorff Distance

12 12/193 Hausdorff Distance

13 13/193 Hausdorff Distance

14 14/193 Hausdorff Distance

15 15/193 Hausdorff Distance

16 16/193 Hausdorff Distance

17 17/193 Hausdorff Distance

18 18/193 Hausdorff Distance

19 19/193 Contractive Transformations A transformation F(X) is contractive if, for all compact sets

20 20/193 Iterated Affine Transformations Special class of fractals where each transformation is an affine transformation

21 21/193 Rendering Fractals Given starting set X 0 Attractor is

22 22/193 Rendering Fractals Given starting set X 0 Attractor is

23 23/193 Rendering Fractals Given starting set X 0 Attractor is

24 24/193 Rendering Fractals Given starting set X 0 Attractor is

25 25/193 Rendering Fractals Given starting set X 0 Attractor is

26 26/193 Rendering Fractals

27 27/193 Rendering Fractals

28 28/193 Rendering Fractals

29 29/193 Rendering Fractals

30 30/193 Rendering Fractals

31 31/193 Rendering Fractals

32 32/193 Rendering Fractals

33 33/193 Rendering Fractals

34 34/193 Rendering Fractals

35 35/193 Rendering Fractals

36 36/193 Rendering Fractals

37 37/193 Rendering Fractals

38 38/193 Rendering Fractals

39 39/193 Rendering Fractals

40 40/193 Rendering Fractals

41 41/193 Rendering Fractals

42 42/193 Rendering Fractals

43 43/193 Rendering Fractals

44 44/193 Rendering Fractals

45 45/193 Rendering Fractals

46 46/193 Rendering Fractals

47 47/193 Rendering Fractals

48 48/193 Rendering Fractals

49 49/193 Rendering Fractals

50 50/193 Contractive Transformations A transformation F(X) is contractive if, for all compact sets A set of transformations has a unique attractor if all transformations are contractive  That attractor is independent of the starting shape!!!

51 51/193 Rendering Fractals

52 52/193 Rendering Fractals

53 53/193 Rendering Fractals

54 54/193 Rendering Fractals

55 55/193 Rendering Fractals

56 56/193 Rendering Fractals

57 57/193 Rendering Fractals

58 58/193 Rendering Fractals

59 59/193 Rendering Fractals

60 60/193 Rendering Fractals

61 61/193 Rendering Fractals

62 62/193 Rendering Fractals

63 63/193 Rendering Fractals

64 64/193 Rendering Fractals

65 65/193 Finding Transformations

66 66/193 Finding Transformations

67 67/193 Finding Transformations

68 68/193 Finding Transformations

69 69/193 Finding Transformations

70 70/193 Fractal Tennis Start with any point x For ( i=1; i<100; i++ ) x = M random *x For ( i=1; i<100000; i++ ) draw(x) x = M random *x

71 71/193 Fractal Tennis Start with any point x For ( i=1; i<100; i++ ) x = M random *x For ( i=1; i<100000; i++ ) draw(x) x = M random *x Gets a point on the fractal

72 72/193 Fractal Tennis Start with any point x For ( i=1; i<100; i++ ) x = M random *x For ( i=1; i<100000; i++ ) draw(x) x = M random *x Creates new points on the fractal

73 73/193 Fractal Tennis – Example 25,000 Points

74 74/193 Fractal Tennis – Example 50,000 Points

75 75/193 Fractal Tennis – Example 75,000 Points

76 76/193 Fractal Tennis – Example 100,000 Points

77 77/193 Fractal Tennis – Example 125,000 Points

78 78/193 Fractal Tennis – Example 150,000 Points

79 79/193 Fractal Tennis – Example 175,000 Points

80 80/193 Fractal Tennis – Example 200,000 Points

81 81/193 Modified Fractal Tennis

82 82/193 Modified Fractal Tennis 25,000 Points

83 83/193 Modified Fractal Tennis 50,000 Points

84 84/193 Modified Fractal Tennis 75,000 Points

85 85/193 Modified Fractal Tennis 100,000 Points

86 86/193 Modified Fractal Tennis 125,000 Points

87 87/193 Modified Fractal Tennis 150,000 Points

88 88/193 Modified Fractal Tennis 175,000 Points

89 89/193 Modified Fractal Tennis 200,000 Points

90 90/193 Modified Fractal Tennis Weight probabilities based on area 200,000 Points

91 91/193 Modified Fractal Tennis Weight probabilities based on area 25,000 Points

92 92/193 Modified Fractal Tennis Weight probabilities based on area 50,000 Points

93 93/193 Modified Fractal Tennis Weight probabilities based on area 75,000 Points

94 94/193 Modified Fractal Tennis Weight probabilities based on area 100,000 Points

95 95/193 Modified Fractal Tennis Weight probabilities based on area 125,000 Points

96 96/193 Modified Fractal Tennis Weight probabilities based on area 150,000 Points

97 97/193 Modified Fractal Tennis Weight probabilities based on area 175,000 Points

98 98/193 Modified Fractal Tennis Weight probabilities based on area 200,000 Points

99 99/193 Condensation Sets Given a condensation set C

100 100/193 Condensation Set Example

101 101/193 Condensation Sets – Example Condensation Set

102 102/193 Condensation Sets – Example

103 103/193 Condensation Sets – Example

104 104/193 Condensation Sets – Example

105 105/193 Condensation Sets – Example

106 106/193 Condensation Sets – Example

107 107/193 Condensation Sets – Example

108 108/193 Condensation Sets – Example

109 109/193 Condensation Sets – Example

110 110/193 Condensation Sets – Example

111 111/193 Condensation Sets – Example

112 112/193 Condensation Sets – Example

113 113/193 Condensation Sets – Example

114 114/193 Condensation Sets – Example

115 115/193 Condensation Sets – Example

116 116/193 Condensation Sets – Example

117 117/193 Condensation Sets – Example

118 118/193 Condensation Sets – Example

119 119/193 Condensation Sets – Example

120 120/193 Condensation Sets – Example

121 121/193 Condensation Sets – Example

122 122/193 Rendering Fractals

123 123/193 Rendering Fractals

124 124/193 Rendering Fractals

125 125/193 Rendering Fractals

126 126/193 Rendering Fractals

127 127/193 Rendering Fractals

128 128/193 Rendering Fractals

129 129/193 Rendering Fractals

130 130/193 Condensation Set Example

131 131/193 Condensation Set Example

132 132/193 Condensation Set Example

133 133/193 Condensation Set Example

134 134/193 Condensation Set Example

135 135/193 Condensation Set Example

136 136/193 Condensation Set Example

137 137/193 Condensation Set Example

138 138/193 Condensation Set Example

139 139/193 Condensation Set Example

140 140/193 Condensation Set Example

141 141/193 Fractal Dimension Fractal dimension =

142 142/193 Fractal Dimension Fractal dimension =

143 143/193 Fractal Dimension Fractal dimension =

144 144/193 Fractal Dimension Fractal dimension =

145 145/193 Fractal Dimension Fractal dimension =

146 146/193 Fractal Dimension Fractal dimension =

147 147/193 Fractal Dimension Fractal dimension =

148 148/193 Fractal Dimension Fractal dimension =

149 149/193 Fractal Dimension Fractal dimension =

150 150/193 Fractal Dimension Fractal dimension =

151 151/193 Fractal Dimension Fractal dimension =

152 152/193 Fractal Dimension Fractal dimension =

153 153/193 Fractal Dimension Fractal dimension =

154 154/193 Fractal Dimension Fractal dimension =

155 155/193 Fractal Dimension Fractal dimension =

156 156/193 Fractal Dimension Fractal dimension =

157 157/193 Fractal Dimension Fractal dimension =

158 158/193 Fractal Dimension Fractal dimension =

159 159/193 Fractal Dimension Fractal dimension =

160 160/193 Fractal Dimension Fractal dimension =

161 161/193 Fractal Dimension Fractal dimension =

162 162/193 Fractal Dimension Fractal dimension =

163 163/193 Fractal Dimension Fractal dimension =

164 164/193 Fractal Dimension Fractal dimension =

165 165/193 Fractal Dimension Fractal dimension =

166 166/193 Fractal Dimension Fractal dimension =

167 167/193 Fractal Dimension Fractal dimension =

168 168/193 Fractal Dimension Fractal dimension =

169 169/193 Fractal Dimension Fractal dimension =

170 170/193 Fractal Dimension Fractal dimension =

171 171/193 Fractal Dimension Fractal dimension =

172 172/193 Fractal Dimension Fractal dimension =

173 173/193 Fractal Dimension Fractal dimension =

174 174/193 Fractal Dimension Fractal dimension =

175 175/193 Fractal Dimension Fractal dimension =

176 176/193 Fractal Dimension Fractal dimension =

177 177/193 Fractal Dimension Fractal dimension =

178 178/193 Fractal Dimension Fractal dimension =

179 179/193 Weird Fractal Properties Fractal curves can have infinite length!!!

180 180/193 Weird Fractal Properties Fractal curves can have infinite length!!!

181 181/193 Weird Fractal Properties Fractal curves can have infinite length!!!

182 182/193 Weird Fractal Properties Fractal curves can have infinite length!!!

183 183/193 Weird Fractal Properties Fractal curves can have infinite length!!!

184 184/193 Weird Fractal Properties Fractal curves can have infinite length!!!

185 185/193 Weird Fractal Properties Fractal curves can have infinite length!!!

186 186/193 Weird Fractal Properties Fractal curves can have infinite length!!! But only enclose finite area?

187 187/193 Weird Fractal Properties Fractal curves can have infinite length!!! But only enclose finite area?

188 188/193 Weird Fractal Properties Fractal curves can have infinite length!!! But only enclose finite area?

189 189/193 Weird Fractal Properties Fractal curves can have infinite length!!! But only enclose finite area?

190 190/193 Weird Fractal Properties Fractal curves can have infinite length!!! But only enclose finite area?

191 191/193 Weird Fractal Properties Fractal curves can have infinite length!!! But only enclose finite area?

192 192/193 Weird Fractal Properties Fractal curves can have infinite length!!! But only enclose finite area?

193 193/193 Weird Fractal Properties


Download ppt "1 Dr. Scott Schaefer Fractals and Iterated Affine Transformations."

Similar presentations


Ads by Google