Download presentation
Presentation is loading. Please wait.
Published byFrederica Anthony Modified over 9 years ago
1
Cryptography and Authentication A.J. Han Vinck Essen, 2008
Information theory Cryptography and Authentication A.J. Han Vinck Essen, 2008
2
Cryptographic model sender receiver attacker secrecy encrypt M decrypt M read M find key authentication sign test validity modify generate
3
General (classical) Communication Model
K Secure key channel K source M encrypter C decrypter M destination analyst M‘
4
no information providing ciphers
Shannon (1949): Perfect secrecy condition Prob. distribution (M) = Prob. distribution (M|C) and thus: H(M|C) = H(M) (no gain if we want to guess the message given the cipher)
5
Perfect secrecy condition
Furthermore: for perfect secrecy H(M) H(K) H(M|C) H(MK|C) = H(K|C) + H(M|CK) C and K M = H(K|C) H(K) H(M) = H(M|C) H(K) perfect secrecy!
6
Imperfect secrecy How much ciphertext do we need to find
unique key-message pair given the cipher? Minimum is called unicity distance.
7
Imperfect secrecy Suppose we observe a piece of ciphertext
K and ML determineCL Key K, H(K) source M, H(M) Cipher C H(CL ) Llog2|C| CL Key equivocation: H(K| CL) = H(K,CL) – H(CL)
8
Question: When is H(K| CL) = 0 ?
( K ML CL ) H(K| CL) = H(K) + H(CL|K) – H(CL) = H(K) + H(ML) – H(CL) Using: H(CL ) Llog2|C|; H(ML) LHS(M) where HS(M) is the normalized entropy per output symbol H(K| CL) H(K) + L[HS(M)- log2|C|] = 0 for L = H(K) / [ log2|C|- HS (M)] Define U = the least value of L such that H(K| CL) = 0 Hence: U H(K) / [ log2|C|- HS (M)]
9
conclusion Make HS (M) as large as possible: USE DATA REDUCTION !!
H(K) H(K| CL) U is called the unicity point L H(K) / [ log2|C|- HS (M)]
10
examples: U H(K) / [ log2|C|- HS(M) ]
Substitution cipher: H(K) = log2 26! English: HS(M) 2; |M|= |C|=26; U 32 symbols DES: U 56 / [ 8 – 2 ] 9 ASCII symbols
11
examples: U H(K) / [ log2|C|- HS(M) ]
Permutation cipher: period 26; H(K) = log226! English: H(M) 2; |M|= |C|=26; U 32 symbols Vigenere: key length 80, U 13 symbols ! check!
12
Plaintext-ciphertext attack
H(K,ML, CL) = H(K|ML, CL) + H( CL|ML ) + H(ML) = H(CL|K,ML) + H( K|ML ) + H(ML) H(K|ML, CL) = H(K) - H( CL|ML ) H( CL|ML ) Llog2|C| thus: U H(K) / log2|C| CL ← K,ML K independent from ML
13
Wiretapping model Xn Xn sender noiselesss channel receiver S noise Zn
wiretapper Send: n binary digits 0: Xn of even weight 1: Xn of odd weight Wiretapper: Pe = P(Zn has odd # of errors) = 1- ½(1+(1-2p)n)
14
Wiretapping Pe = 1- ½(1+(1-2p)n) Result: for p ½ Pe ½
and H(S|Zn) = 1 for p 0, Pe np and H(S|Zn) h(np)
15
Wiretapping general strategy
Encoder: use R = k/n error correcting code C carrier c { 2k codewords } message m { 2nh(p) vectors as correctable noise } select c at random and transmit c m Note: 2k 2nh(p) 2n k/n 1 – h(p)
16
Communication sender-receiver
transmit = receive : c m first decode: c calculate m = c m c = m m c c m
17
Wiretapper: c m n‘ receive z = c m n‘ - first decode: c
possible when m n‘ is decodable noise - calculate: c m n‘ c = m n‘ m‘ = m n‘ is one of 2nh(p‘) messages the # of noise sequences n‘ is |n‘ | ~ 2nh(p‘)
18
Wiretapping general strategy
Result: information rate R = h(p) p‘ small: c decodable and H(Sk|Zn) = nh(p‘) p‘ p: H(Sk|Zn) = nh(p) H(Sk|Zn) nh(p) P P‘
19
Wiretapping general strategy picture
2k codewords Volume 2nh(p‘) Volume 2nh(p) codeword 2n vectors
20
authentication Encryption table: message X Key K ( X, K ) Y
unique cipher: Y
21
Authentication: impersonation
message: select y at random Pi (y = correct) = ½ key P(key = i ) = 1/4 P(message = i ) = 1/2 cipher Pi is probability that an injected cipher is valid
22
Authentication: bound
|X| Let : |X| # messages |K| # keys |Y| # ciphers Pi prob (random cipher = valid) |X|/|Y| = probability that we choose one of the colors in a specific row ´ specified by the key |K|
23
Cont‘d Since: ( Y, K) X H(X) = H(Y|K)
An improved (Simmons) bound gives: Pi 2H(X)/2H(Y) = 2H(Y|K)-H(Y) = 2-I(Y;K)
24
Cont‘d Pi 2-I(Y;K) = 2+ H(K |Y) - H(K)
For low probability of success: H(K|Y) = 0 For perfect secrecy: H(K|Y) = H(K) Contradiction!
25
Cont‘d Prob ( key = 0 ) = Prob ( key = 0 ) = ½; Prob (X = 0) = Prob(X = 1) = 1/2 0 1 0 1 prob success = ½ prob success = 1 H(K|Y) = 0 H(K|Y) = 1 no secrecy perfect secrecy
26
Authentication: impersonation
X= 0 1 P(X=0) = P(X=1)= ½ K= P(K=0) = P(K=1)= ½ 1 1 2 H(K) =1; H(K|Y) = ½ Pi =1 (send always 1) Pi 2H(Y|K)-H(Y) = = 2 –0.5 = 0.7
27
Authentication: substitution
message 0 1 0 0 2 Key 1 1 3 2 0 3 3 1 2 cipher Active wiretapping: replace an observed cipher by another cipher Example: observe 0 replace by 3 probability of success = ½ (accepted only if key = 2)
28
Authentication: substitution examples
H(K) = 2; H(K|Y) = 1; Pi ½ 0 1 0 0 2 1 1 3 2 0 3 3 1 2 0 1 0 3 1 2 2 1 3 0 0 1 0 2 1 0 3 1 2 3 Ps = ½ H(X|Y) = 0 Ps = 1 H(X|Y) = 1 Ps = ½ H(X|Y) = 1 Ps = probability( substitution is successful)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.