Presentation is loading. Please wait.

Presentation is loading. Please wait.

7.1 – Operations on Functions. OperationDefinition.

Similar presentations


Presentation on theme: "7.1 – Operations on Functions. OperationDefinition."— Presentation transcript:

1 7.1 – Operations on Functions

2 OperationDefinition

3 Sum

4 OperationDefinition Sum(f + g)(x)

5 OperationDefinition Sum(f + g)(x) = f(x) + g(x)

6 OperationDefinition Sum(f + g)(x) = f(x) + g(x) Difference

7 OperationDefinition Sum(f + g)(x) = f(x) + g(x) Difference(f – g)(x) =

8 OperationDefinition Sum(f + g)(x) = f(x) + g(x) Difference(f – g)(x) = f(x) – g(x)

9 OperationDefinition Sum(f + g)(x) = f(x) + g(x) Difference(f – g)(x) = f(x) – g(x) Product

10 OperationDefinition Sum(f + g)(x) = f(x) + g(x) Difference(f – g)(x) = f(x) – g(x) Product(f · g)(x) =

11 OperationDefinition Sum(f + g)(x) = f(x) + g(x) Difference(f – g)(x) = f(x) – g(x) Product(f · g)(x) = f(x) · g(x)

12 OperationDefinition Sum(f + g)(x) = f(x) + g(x) Difference(f – g)(x) = f(x) – g(x) Product(f · g)(x) = f(x) · g(x) Quotient f (x) = g

13 OperationDefinition Sum(f + g)(x) = f(x) + g(x) Difference(f – g)(x) = f(x) – g(x) Product(f · g)(x) = f(x) · g(x) Quotient f (x) = f(x) g g(x)

14 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9

15 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x)

16 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x)

17 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x)

18 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3)

19 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3)

20 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9)

21 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x + 6

22 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x)

23 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x)

24 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x)

25 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x) = (2x – 3)

26 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x) = (2x – 3)

27 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x) = (2x – 3) – (4x + 9)

28 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x) = (2x – 3) – (4x + 9)

29 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x) = (2x – 3) – (4x + 9) = 2x – 3 – 4x

30 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x) = (2x – 3) – (4x + 9) = 2x – 3 – 4x – 9

31 Ex. 1 Find (f + g)(x), (f – g)(x), (f · g)(x), & f (x)for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x) = (2x – 3) – (4x + 9) = 2x – 3 – 4x – 9 = -2x – 12

32 (f · g)(x)

33 (f · g)(x) = f(x) · g(x)

34

35 = (2x – 3)

36 (f · g)(x) = f(x) · g(x) = (2x – 3)

37 (f · g)(x) = f(x) · g(x) = (2x – 3)(4x + 9)

38 (f · g)(x) = f(x) · g(x) = (2x – 3)(4x + 9) = 8x 2 + 18x – 12x – 27

39 (f · g)(x) = f(x) · g(x) = (2x – 3)(4x + 9) = 8x 2 + 18x – 12x – 27 = 8x 2 + 6x – 27

40 (f · g)(x) = f(x) · g(x) = (2x – 3)(4x + 9) = 8x 2 + 18x – 12x – 27 = 8x 2 + 6x – 27 f (x) g

41 (f · g)(x) = f(x) · g(x) = (2x – 3)(4x + 9) = 8x 2 + 18x – 12x – 27 = 8x 2 + 6x – 27 f (x) = f(x) g g(x)

42 (f · g)(x) = f(x) · g(x) = (2x – 3)(4x + 9) = 8x 2 + 18x – 12x – 27 = 8x 2 + 6x – 27 f (x) = f(x) g g(x) = 2x – 3 4x + 9

43 (f · g)(x) = f(x) · g(x) = (2x – 3)(4x + 9) = 8x 2 + 18x – 12x – 27 = 8x 2 + 6x – 27 f (x) = f(x) g g(x) = 2x – 3 4x + 9 *Factor & Simplify if possible!

44 Composite Function

45 - taking the function

46 Composite Function - taking the function of a function

47 Composite Function - taking the function of a function [f °g(x)]

48 Composite Function - taking the function of a function [f °g(x)] = f[g(x)]

49 Composite Function - taking the function of a function [f °g(x)] = f[g(x)] Ex. 2 Find [f °g(x)] and [g°f(x)] for the functions f(x) = x + 3 and g(x) = x 2 + x – 1.

50 Composite Function - taking the function of a function [f °g(x)] = f[g(x)] Ex. 2 Find [f °g(x)] and [g°f(x)] for the functions f(x) = x + 3 and g(x) = x 2 + x – 1. [f °g(x)] = f[g(x)]

51 Composite Function - taking the function of a function [f °g(x)] = f[g(x)] Ex. 2 Find [f °g(x)] and [g°f(x)] for the functions f(x) = x + 3 and g(x) = x 2 + x – 1. [f °g(x)] = f[g(x)]

52 Composite Function - taking the function of a function [f °g(x)] = f[g(x)] Ex. 2 Find [f °g(x)] and [g°f(x)] for the functions f(x) = x + 3 and g(x) = x 2 + x – 1. [f °g(x)] = f[g(x)] = f[x 2 + x – 1]

53 Composite Function - taking the function of a function [f °g(x)] = f[g(x)] Ex. 2 Find [f °g(x)] and [g°f(x)] for the functions f(x) = x + 3 and g(x) = x 2 + x – 1. [f °g(x)] = f[g(x)] = f[x 2 + x – 1]

54 Composite Function - taking the function of a function [f °g(x)] = f[g(x)] Ex. 2 Find [f °g(x)] and [g°f(x)] for the functions f(x) = x + 3 and g(x) = x 2 + x – 1. [f °g(x)] = f[g(x)] = f[x 2 + x – 1]

55 Composite Function - taking the function of a function [f °g(x)] = f[g(x)] Ex. 2 Find [f °g(x)] and [g°f(x)] for the functions f(x) = x + 3 and g(x) = x 2 + x – 1. [f °g(x)] = f[g(x)] = f(x 2 + x – 1) = (x 2 + x – 1) + 3

56 Composite Function - taking the function of a function [f °g(x)] = f[g(x)] Ex. 2 Find [f °g(x)] and [g°f(x)] for the functions f(x) = x + 3 and g(x) = x 2 + x – 1. [f °g(x)] = f[g(x)] = f(x 2 + x – 1) = (x 2 + x – 1) + 3 = x 2 + x + 2

57 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)]

58 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)]

59 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)]

60 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)]

61 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3)

62 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3)

63 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3)

64 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3) = (x + 3) 2

65 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3) = (x + 3) 2

66 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3) = (x + 3) 2 + (x + 3)

67 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3) = (x + 3) 2 + (x + 3)

68 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3) = (x + 3) 2 + (x + 3) – 1

69 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3) = (x + 3) 2 + (x + 3) – 1 = (x + 3)(x + 3) + (x + 3) – 1

70 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3) = (x + 3) 2 + (x + 3) – 1 = (x + 3)(x + 3) + (x + 3) – 1 = x 2 + 6x + 9 + x + 3 – 1

71 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3) = (x + 3) 2 + (x + 3) – 1 = (x + 3)(x + 3) + (x + 3) – 1 = x 2 + 6x + 9 + x + 3 – 1 = x 2 + 7x + 11

72 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3) = (x + 3) 2 + (x + 3) – 1 = (x + 3)(x + 3) + (x + 3) – 1 = x 2 + 6x + 9 + x + 3 – 1 = x 2 + 7x + 11 Ex. 3 If f(x) = 4x and g(x) = 2x – 1, find g[f(5)].

73 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3) = (x + 3) 2 + (x + 3) – 1 = (x + 3)(x + 3) + (x + 3) – 1 = x 2 + 6x + 9 + x + 3 – 1 = x 2 + 7x + 11 Ex. 3 If f(x) = 4x and g(x) = 2x – 1, find g[f(5)]. g[f(5)] =

74 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3) = (x + 3) 2 + (x + 3) – 1 = (x + 3)(x + 3) + (x + 3) – 1 = x 2 + 6x + 9 + x + 3 – 1 = x 2 + 7x + 11 Ex. 3 If f(x) = 4x and g(x) = 2x – 1, find g[f(5)]. g[f(5)] =

75 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3) = (x + 3) 2 + (x + 3) – 1 = (x + 3)(x + 3) + (x + 3) – 1 = x 2 + 6x + 9 + x + 3 – 1 = x 2 + 7x + 11 Ex. 3 If f(x) = 4x and g(x) = 2x – 1, find g[f(5)]. g[f(5)] =

76 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3) = (x + 3) 2 + (x + 3) – 1 = (x + 3)(x + 3) + (x + 3) – 1 = x 2 + 6x + 9 + x + 3 – 1 = x 2 + 7x + 11 Ex. 3 If f(x) = 4x and g(x) = 2x – 1, find g[f(5)]. g[f(5)] = g[4(5)]

77 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3) = (x + 3) 2 + (x + 3) – 1 = (x + 3)(x + 3) + (x + 3) – 1 = x 2 + 6x + 9 + x + 3 – 1 = x 2 + 7x + 11 Ex. 3 If f(x) = 4x and g(x) = 2x – 1, find g[f(5)]. g[f(5)] = g[4(5)] = g(20)

78 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3) = (x + 3) 2 + (x + 3) – 1 = (x + 3)(x + 3) + (x + 3) – 1 = x 2 + 6x + 9 + x + 3 – 1 = x 2 + 7x + 11 Ex. 3 If f(x) = 4x and g(x) = 2x – 1, find g[f(5)]. g[f(5)] = g[4(5)] = g(20)

79 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3) = (x + 3) 2 + (x + 3) – 1 = (x + 3)(x + 3) + (x + 3) – 1 = x 2 + 6x + 9 + x + 3 – 1 = x 2 + 7x + 11 Ex. 3 If f(x) = 4x and g(x) = 2x – 1, find g[f(5)]. g[f(5)] = g[4(5)] = g(20) = 2(20) – 1

80 f(x) = x + 3 and g(x) = x 2 + x – 1 [g°f(x)] = g[f(x)] = g(x + 3) = (x + 3) 2 + (x + 3) – 1 = (x + 3)(x + 3) + (x + 3) – 1 = x 2 + 6x + 9 + x + 3 – 1 = x 2 + 7x + 11 Ex. 3 If f(x) = 4x and g(x) = 2x – 1, find g[f(5)]. g[f(5)] = g[4(5)] = g(20) = 2(20) – 1 = 39

81 7.3 – Square Root Functions & Inequalities

82 Ex. 1 Identify the domain & range of each function. a. y = √ x + 4

83 Ex. 1 Identify the domain & range of each function. a. y = √ x + 4 x + 4 = 0

84 Ex. 1 Identify the domain & range of each function. a. y = √ x + 4 x + 4 = 0 x = -4

85 Ex. 1 Identify the domain & range of each function. a. y = √ x + 4 x + 4 = 0 x = -4 Domain: { x | x > -4}

86 Ex. 1 Identify the domain & range of each function. a. y = √ x + 4 x + 4 = 0 x = -4 Domain: { x | x > -4} y = √ x + 4

87 Ex. 1 Identify the domain & range of each function. a. y = √ x + 4 x + 4 = 0 x = -4 Domain: { x | x > -4} y = √ x + 4

88 Ex. 1 Identify the domain & range of each function. a. y = √ x + 4 x + 4 = 0 x = -4 Domain: { x | x > -4} y = √ x + 4 y = √ -4+ 4

89 Ex. 1 Identify the domain & range of each function. a. y = √ x + 4 x + 4 = 0 x = -4 Domain: { x | x > -4} y = √ x + 4 y = √ -4+ 4 y = 0

90 Ex. 1 Identify the domain & range of each function. a. y = √ x + 4 x + 4 = 0 x = -4 Domain: { x | x > -4} y = √ x + 4 y = √ -4+ 4 y = 0 Range: { y | y > 0}

91 Ex. 2 Graph each function. State the domain & range. a. y = √ x + 4 Domain: { x | x > -4}, Range: { y | y > 0} Graph: Y= 2 nd, x 2 x + 4) Zoom:6 2 nd Graph Plot at least 3 points of curve (x & y ints. & one other pt.)

92 xy -40 -31 02

93 Ex. 3 Graph each inequality a. y <√ x + 4 Graph: Y= Cursor left to \ Press “Enter” until (If > make it ) 2 nd, x 2 x + 4) Zoom:6 2 nd Graph Plot at least 3 points of curve (x & y ints. & one other pt.)

94 xy -40 -31 02


Download ppt "7.1 – Operations on Functions. OperationDefinition."

Similar presentations


Ads by Google