Download presentation
Presentation is loading. Please wait.
Published byGinger Melissa Murphy Modified over 9 years ago
1
Byeong-Joo Lee www.postech.ac.kr/~calphad Byeong-Joo Lee POSTECH - MSE calphad@postech.ac.kr Diffusion
2
Byeong-Joo Lee www.postech.ac.kr/~calphad Objectives 1. Introduction ․ Definition ․ Diffusion Mechanism: Vacancy Mechanism, Interstitial Mechanism 2. Diffusional Flux and Application of Fick's law ․ Fick's first law in two component system ․ Fick's second law Application - Steady State Solution 3. Non-Steady State Diffusion ․ Thin Film Source (Thin Layer) ․ Semi-Infinite Source (Diffusion Couple) ․ Laplace/Fourier Transformation ․ Error function ․ Homogenization/Solute penetration ․ Trigonometric-Series Solutions ․ Determination of diffusion coefficient (Grube, Boltzman-Matano method) ․ Other Examples ․ Diffusion along high diffusion paths 4. Diffusion Coefficients ․ Reference Frame of Diffusion ⇒ Darken's Equation ․ Intrinsic, Inter, Self, Trace, Impurity Trace Diffusion Coefficient ․ Reference : Smithells Metals Reference Book, Chap. 13., Reed-Hil
3
Byeong-Joo Lee www.postech.ac.kr/~calphad When metal A meets metal B Interstitial solid solution Substitutional solid solution precipitation Interstitial solid solution Substitutional solid solution precipitation
4
Byeong-Joo Lee www.postech.ac.kr/~calphad Diffusional Reactions – binary & multicomponent systems
5
Byeong-Joo Lee www.postech.ac.kr/~calphad Multicomponent Diffusion Fe-3.8Si-C Fe-C Darken’s uphill diffusion Diffusion between multiphase layers A. Engström, Scand. J. Metall. 24, 12 (1995). B.-J. Lee, J. Phase Equilibria 22, 241 (2001).
6
Byeong-Joo Lee www.postech.ac.kr/~calphad Definition Homogenization phenomena by non-convective mass transport due to chemical potential or electrochemical potential difference in a multicomponent single phase
7
Byeong-Joo Lee www.postech.ac.kr/~calphad Fick’s 1 st Law atoms m -2 s -1 Consider net flux from plane 1 to plane 2 m 2 s -1
8
Byeong-Joo Lee www.postech.ac.kr/~calphad Fick’s 1 st Law
9
Byeong-Joo Lee www.postech.ac.kr/~calphad Consider the change of solute concentration between plane 1 and plane 2 during δt for a constant D B Fick’s 2 nd Law
10
Byeong-Joo Lee www.postech.ac.kr/~calphad Fick’s 2 nd Law
11
Byeong-Joo Lee www.postech.ac.kr/~calphad As a thermally activated process for interstitial diffusion More about Diffusion Coefficient – Thermal Activation How about for substitutional diffusion?
12
Byeong-Joo Lee www.postech.ac.kr/~calphad Steady State Solution of Diffusion
13
Byeong-Joo Lee www.postech.ac.kr/~calphad Non-Steady State Solution of Diffusion
14
Byeong-Joo Lee www.postech.ac.kr/~calphad Non-Steady State Solution of Diffusion - Superposition Principle
15
Byeong-Joo Lee www.postech.ac.kr/~calphad Non-Steady State Solution of Diffusion - Superposition Principle
16
Byeong-Joo Lee www.postech.ac.kr/~calphad Non-Steady State Solution – Application of Superposition Principle
17
Byeong-Joo Lee www.postech.ac.kr/~calphad Non-Steady State Solution – Leak Test & Error Function
18
Byeong-Joo Lee www.postech.ac.kr/~calphad Non-Steady State Solution of Diffusion – Semi-Infinite Source
19
Byeong-Joo Lee www.postech.ac.kr/~calphad Non-Steady State Solution of Diffusion – Semi-Infinite Source
20
Byeong-Joo Lee www.postech.ac.kr/~calphad Non-Steady State Solution of Diffusion – Semi-Infinite Source
21
Byeong-Joo Lee www.postech.ac.kr/~calphad Non-Steady State Solution of Diffusion – Semi-Infinite Source
22
Byeong-Joo Lee www.postech.ac.kr/~calphad Non-Steady State Solution of Diffusion – Semi-Infinite Source
23
Byeong-Joo Lee www.postech.ac.kr/~calphad Non-Steady State Solution of Diffusion – Semi-Infinite Source
24
Byeong-Joo Lee www.postech.ac.kr/~calphad Determination of Diffusivity – Grube method
25
Byeong-Joo Lee www.postech.ac.kr/~calphad Determination of Diffusivity – Boltzmann-Matano
26
Byeong-Joo Lee www.postech.ac.kr/~calphad Non-Steady State Solution of Diffusion – Separation of Variable
27
Byeong-Joo Lee www.postech.ac.kr/~calphad Non-Steady State Solution of Diffusion – Separation of Variable
28
Byeong-Joo Lee www.postech.ac.kr/~calphad Non-Steady State Solution of Diffusion – Separation of Variable
29
Byeong-Joo Lee www.postech.ac.kr/~calphad Non-Steady State Solution of Diffusion – Separation of Variable
30
Byeong-Joo Lee www.postech.ac.kr/~calphad Non-Steady State Solution of Diffusion – Separation of Variable
31
Byeong-Joo Lee www.postech.ac.kr/~calphad Diffusion along High Diffusion Path – Grain Boundary Diffusion Model
32
Byeong-Joo Lee www.postech.ac.kr/~calphad Diffusion Coefficient – Inter Diffusion
33
Byeong-Joo Lee www.postech.ac.kr/~calphad Diffusion Coefficient – Inter Diffusion
34
Byeong-Joo Lee www.postech.ac.kr/~calphad Diffusion Coefficient – Self/Tracer Diffusion
35
Byeong-Joo Lee www.postech.ac.kr/~calphad Diffusion Coefficient – Intrinsic Diffusion Coefficient
36
Byeong-Joo Lee www.postech.ac.kr/~calphad Diffusion Coefficient – Inter Diffusion Coefficient
37
Byeong-Joo Lee www.postech.ac.kr/~calphad Inter-diffusion Coefficient in a binary alloy – linked to intrinsic diffusion by the Darken’s relation Intrinsic diffusion Coefficient – composed of mobility term (Tracer Diffusion) and thermodynamic factor Tracer diffusion Coefficient – as a function of composition & temp. : tracer impurity diffusion coefficient : self-diffusion of A in the given structure Diffusion Coefficient – Modeling
38
Byeong-Joo Lee www.postech.ac.kr/~calphad assuming composition independent D o Linear composition dependence of Q B in a composition range N 1 ~ N 2 Tracer diffusion Coefficient at an intermediate composition is a geometrical mean of those at both ends – from experiments the same for the D o term Both Q o & Q are modeled as a linear function of composition Diffusion Coefficient – Modeling
39
Byeong-Joo Lee www.postech.ac.kr/~calphad Moving Boundary Problem – Basic Equation
40
Byeong-Joo Lee www.postech.ac.kr/~calphad Binary Diffusion
41
Byeong-Joo Lee www.postech.ac.kr/~calphad Application to Interfacial Reactions – Ti/Al 2 O 3 Reaction
42
Byeong-Joo Lee www.postech.ac.kr/~calphad Application to Interfacial Reactions – Ti/Al 2 O 3 Reaction
43
Byeong-Joo Lee www.postech.ac.kr/~calphad Multi-Component Diffusion Simulation – between Multi-Phase Layers A. Engström, Scand. J. Metall. 24, 12 (1995). B.-J. Lee, Scripta Mater. 40, 573 (1999)
44
Byeong-Joo Lee www.postech.ac.kr/~calphad B.-J. Lee, Scripta Mater. 40, 573 (1999) Multi-Component Diffusion Simulation – between Multi-Phase Layers
45
Byeong-Joo Lee www.postech.ac.kr/~calphad B.-J. Lee, Scripta Mater. 40, 573 (1999) Multi-Component Diffusion Simulation – between Multi-Phase Layers
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.