Download presentation
Presentation is loading. Please wait.
Published byApril McDonald Modified over 9 years ago
1
Optimising Ventilation Using a Simple Model of Ventilated ARDS Lung Geoffrey M Shaw 1, J. Geoffrey Chase 2, Toshinori Yuta 2, Beverley Horn 2 and Christopher E Hann 2 1 Univ of Otago, Christchurch School of Medicine and Health Sciences 2 Univ of Canterbury, Dept of Mechanical Engineering, Centre for Bio-Engineering
2
Introduction Mechanical ventilation is a “bread and butter” therapy in critical care It is well known that a properly or well ventilated patient has an increased likelihood of improved outcome However, selecting optimal settings, such as PEEP and tidal volume are difficult Especially, as these settings can change regularly as patient condition evolves, particularly in ARDS Hence, a method of monitoring and capturing these changes and then optimising ventilation would offer significant clinical benefit. Models offer the opportunity to both monitor and optimise ventilated patient status for better outcomes
3
Model Basics Goal = capture critically ill patient behaviour Healthy region is kept inflated under PEEP Most of volume change occurs in abnormal region Recruitment and Derecruitment (R/D) is the fundamental mechanism of volume change Clinical Tradeoff: Maximise gas exchange and minimise risk of damage (e.g. tidal volume and PEEP “within reason”) Requirement: Simple model to determine the recruitment status of a patient and thus the pressure, volume changes for various PEEP and tidal volume settings/choices Pressure Volume PEEP Healthy Abnormal Collapsed Peak Volume Peak Pressure Inspiretory Pressure Tidal Volume End Exp. Volume
4
More Detail Compartments with different superimposed pressure Lung units – cluster of alveoli and distal airways
5
Model Skewed normal distribution Unique to a patient and condition Recruitment is described by Threshold Opening Pressure (TOP) Derecruitment is described by Threshold Closing Pressure (TCP) TOP TCP Pressure Number of Units
6
Results True lung PV curve with associated threshold pressure distributions
7
PEEP Unique distributions for different levels of PEEP are found
8
Clinical Application Optimisation of ventilation –Parameter identification = patient specific model –Simulation to determine effect of settings on PV curve –Optimise ventilator settings as desired
9
Clinical Application Optimisation of ventilator treatment –Reduces recovery time –Detect over-inflation Up-to-minute condition specific result –Result immediately applicable –Unique to patient and condition Provides continuous patient monitoring Simple GUI based system could be readily put on a PDA
10
Clinical Application Data requirements: –Pressure and flow (volume) data at different PEEP values (2 minimum, 3 preferred = current and +/- 2-5 cmH2O Data acquisition: –Obtain data directly from ventilator –Patient kept on ventilator –No additional tests, i.e. CT, MRI –Fully/Semi automatic data acquisition, simulation, and analysis Similar data can be used for full validation study
11
GUI Lung parameters Resulting PV curve Alternative settings
12
Summary Simplified model of mechanics captures fundamental characteristics Shows a potential to be a clinical tool to: –Estimate and track state of disease –Provide continuous monitoring –Provide objective optimal ventilator settings Minimum interference to the patient and staff
13
Any Questions?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.