Download presentation
Presentation is loading. Please wait.
Published byLoraine Park Modified over 9 years ago
1
Week 8: QUANTITATIVE RESEARCH (2) An introduction to using SPSS to summarise & analyse survey data MA CORPORATE SOCIAL RESPONSIBILITY ACP011C – RESEARCH METHODS FOR CSR Richard Charlesworth
2
Learning outcomes What is SPSS? Relationship between the SPSS data file & the questionnaire Creating & preparing the SPSS data file Producing SPSS output – data description Saving output & data files Incorporating SPSS output in a document
3
–Formerly: ‘Statistical package for the social sciences’ –Now: ‘Statistical products, services and solutions’ –Founded in 1968 at Stanford University by 2 graduate students –Statistical software → corporation → PC/Windows development → enterprise –In 2009-10 software known as ‘PASW Statistics’ (Predictive Analytics Software); in 2010 acquired by IBM – now known as ‘IBM SPSS’ –SPSS software is used by more than 120,000 corporations including 20 of the top 24 global commercial banks, and the leading 12 global pharmaceutical companies –Users also include academic institutions, healthcare providers, market research companies, and government agencies –Used in more than 100 countries –More information.. http://www.spss.com/ What is SPSS? Some background information
4
SPSS data file – a matrix of rows & columns respondentsportreasonrangechanges1changes2genderage 163234229 211216134 371427244 434234242 552435128 611256236 753115147 821328219 954214227 10413282999 :::::::: :::::::: 2972168261 305888558127
5
SPSS data file – the rows respondentsportreasonrangechanges1changes2genderage 163234229 211216134 371427244 434234242 552435128 611256236 753115147 821328219 954214227 10413282999 :::::::: :::::::: 2972168261 305888558127 This row comprises answers from the questionnaire submitted by respondent no. 3. SPSS refers to rows as ‘Cases’
6
SPSS data file – the columns respondentsportreasonrangechanges1changes2genderage 163234229 211216134 371427244 434234242 552435128 611256236 753115147 821328219 954214227 10413282999 :::::::: :::::::: 2972168261 305888558127 Variable names - help us navigate through the data set
7
SPSS data file – the columns respondentsportreasonrangechanges1changes2genderage 163234229 211216134 371427244 434234242 552435128 611256236 753115147 821328219 954214227 10413282999 :::::::: :::::::: 2972168261 305888558127 Answers to Q1 – ‘Which sport/activity have you taken part in during this visit to the Centre?’
8
SPSS data file – the columns respondentsportreasonrangechanges1changes2genderage 163234229 211216134 371427244 434234242 552435128 611256236 753115147 821328219 954214227 10413282999 :::::::: :::::::: 2972168261 305888558127 code 6 = gym training code 1 = swimming code 4 = badminton code 3 = judo
9
SPSS data file – the columns respondentsportreasonrangechanges1changes2genderage 163234229 211216134 371427244 434234242 552435128 611256236 753115147 821328219 954214227 10413282999 :::::::: :::::::: 2972168261 305888558127 Two answers are required for Q4 - ‘The two most important developments’ proposed for the Centre
10
SPSS data file – missing value codes respondentsportreasonrangechanges1changes2genderage 163234229 211216134 371427244 434234242 552435128 611256236 753115147 821328219 954214227 10413282999 :::::::: :::::::: 2972168261 305888558127 No response coded 999 Multiple response coded 888
11
SPSS data file – data types respondentsportreasonrangechanges1changes2genderage 163234229 211216134 371427244 434234242 552435128 611256236 753115147 821328219 954214227 10413282999 :::::::: :::::::: 2972168261 305888558127 The data file will contain up to three different types of data Nominal data, Ordinal data, & Cardinal data
12
SPSS data file – data types respondentsportreasonrangechanges1changes2genderage 163234229 211216134 371427244 434234242 552435128 611256236 753115147 821328219 954214227 10413282999 :::::::: :::::::: 2972168261 305888558127 Nominal data – arbitrary codes Any more examples of Nominal data generated by this questionnaire?
13
respondentsportreasonrangechanges1changes2genderage 163234229 211216134 371427244 434234242 552435128 611256236 753115147 821328219 954214227 10413282999 :::::::: :::::::: 2972168261 305888558127 Ordinal data - codes, but with an underlying order or sequence SPSS data file – data types Any more examples of Ordinal data generated by this questionnaire?
14
respondentsportreasonrangechanges1changes2genderage 163234229 211216134 371427244 434234242 552435128 611256236 753115147 821328219 954214227 10413282999 :::::::: :::::::: 2972168261 305888558127 Cardinal data – has sequence and units of measurement on an interval or ratio scale. Called ‘Scale’ data in SPSS SPSS data file – data types Any more examples of Cardinal data generated by this questionnaire?
15
Learning outcomes BACKGROUND/CONTEXT What is SPSS? Relationship between the SPSS data file & the questionnaire PRACTICAL WORK Creating & preparing the SPSS data file Producing SPSS output – data description Saving output & data files Incorporating SPSS output in a document
16
Data entry o enter directly to data editor, or o copy and paste from Excel (or Word) file Defining the variables o Type- Numeric or String o Name- allows you to allocate a meaningful variable name o Label - allows a brief description of the variable o Values- assigns descriptions to the numerical codes o Missing data - assigns codes for missing data o Measure- confirms type of data Summarising data & preliminary analyses – some examples o Frequencies - graphs (‘charts’), tables o Descriptive statistics Incorporating output in a document Saving SPSS files Using SPSS
17
Login Open Excel o Go to the shared drive o Open the folder LMBS, then the folder ACP011C Research Methods for CSR o Open Seabridge Fitness & Sports Centre.xls o Save to the X-drive (your home drive) or disk/memory stick o Close Excel Open SPSS o Copy & paste Seabridge Fitness & Sports Centre data to the SPSS data editor (Note: just the numbers; NOT the column headings) After the demonstration, start defining the variables o Type- ‘Numeric’ or ‘String’ o Name- allows you to allocate a meaningful variable name o Label - allows a brief description of the variable o Values- assigns descriptions to the numerical codes o Missing data - assigns codes for missing data o Measure- confirms type of data SPSS Practical Session – start up...
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.