Presentation is loading. Please wait.

Presentation is loading. Please wait.

Gauge Theory and Topological Strings Geometry Conference in honour of Nigel Hitchin - RHD, C. Vafa, E.Verlinde, hep-th/0602087 - J. de Boer, M. Chang,

Similar presentations


Presentation on theme: "Gauge Theory and Topological Strings Geometry Conference in honour of Nigel Hitchin - RHD, C. Vafa, E.Verlinde, hep-th/0602087 - J. de Boer, M. Chang,"— Presentation transcript:

1 Gauge Theory and Topological Strings Geometry Conference in honour of Nigel Hitchin - RHD, C. Vafa, E.Verlinde, hep-th/0602087 - J. de Boer, M. Chang, RHD, J. Manschot, E. Verlinde, hep-th/0608059 Robbert Dijkgraaf University of Amsterdam

2 Nigel Hitchin’s Circle of Ideas

3 integrable systems special holonomies hyper-Kahler calibrations (generalized) CY spectral curves mirror symmetry self-dual geometry quantization instantons Nigel Hitchin’s Circle of Ideas monopoles Higgs-bundles

4 integrable systems special holonomies hyper-Kahler calibrations (generalized) CY spectral curves mirror symmetry self-dual geometry quantization instantons monopoles Higgs-bundles

5 integrable systems special holonomies hyper-Kahler calibrations (generalized) CY spectral curve mirror symmetry self-dual geometry quantization instantons Random Walk monopoles Higgs-bundles

6 X simply-connected Kähler manifold, dim C X=3, c 1 (X) = 0, no torsion. X Calabi-Yau threefolds Diffeomorphism type of X is completely fixed by b 3 (X) and b 2 (X) plus classical invariants F c l 0 ( t ) = Z X 1 6 t 3 ; t 2 H 2 ( X ; Z ) F c l 1 ( t ) = 1 12 Z X t ^ c 2

7 Decomposition = X 0 X § g X = X 0 # § g b 3 = 0 b 2 = 0 Core § g = # g ¡ S 3 £ S 3 ¢ [C.T.C. Wall]

8 Miles Reid’s Fantasy: “ There is only one CY space ” M g b 2 = 0 All CY connected through conifold transitions S 3 → S 2 b 2 = 1 Kähler CYs complex structure moduli

9 Gromov-Witten Invariants Exact instanton sum X Moduli stack of stable maps GW g ; d = Z [ M g ( X ; d )] v i r 1 2 Q

10 Topological String (A model) F qu g ( t ) = X d GW g ; d e ¡ d t Quantum corrections, t  H 2 (X,C) Z t op ( t ; ¸ ) = exp X g ¸ 2 g ¡ 2 F g ( t ) Partition function F g ( t ) = F c l g ( t ) + F qu g ( t )

11 Topological String (B model) Complex moduli, t  H 2,1 (X) Localizes on (almost) constant maps df=0 f Kodaira-Spencer field theory

12 genus 0: classical Variation of Hodge Structures genus 1: analytic Ray-Singer torsion genus 2 and higher: quantum corrections quantization of complex structure moduli space M X

13 Mirror Symmetry classical quantum A-model B-Model

14 CY fibered by special Lagrangian T 3 [Strominger, Yau, Zaslov] network of singularities S 1 shrinks

15 Mirror Symmetry Dual Torus Fibrations base A model B model

16 D-Branes coherent sheaves A special Lagrangians + gauge bundle B homological mirror symmetry) derived category Fukaya category

17 Symplectic vector space V = ¤ ­ C » = H 3 ( X ; C ) Z X ® ^ ¯ Charge Lattice (B-model) ¤ B = K 1 ( X ) » = H 3 ( X ; Z )

18 Period Map & Quantization moduli space of CY M X hol 3-form dz 1  dz 2  dz 3 V Lagrangian cone L=graph (dF 0 )  semi-classical state ψ ~ exp F 0

19 Special Geometry Darboux coordinates

20 Topological String Partition Function Transforms as a wave function (metaplectic representation) under Sp(2n,Z) change of canonical basis (A,B)

21 A-Model complexified Kähler cone symplectic vector space complexified Kähler volume H ev ( X ; C ) h ® ; ¯ i = i n d ex D ® ­ ¯ ¤ 1 ¸ e k + i B + GW quantum corrections F c l 0 = t 3 6 ¸ 2

22 Charged objects: D-branes charged particles electric-magnetic charges Large volume: q electric D0-D2 p magnetic D4-D6

23 Gauge Theory Invariants Coherent sheaf E ! X (conjectured) Donaldson-Thomas invariant D ( ¹ ) = R [ M ¹ ] v i r 1 Moduli space of stable sheaves Charge ¹ = [ E ] 2 K 0 ( X ) = ¤

24 Gauge Theory D(  ) is conjectured to be the partition function of a 6-dim topologically twisted gauge theory S = Z X j F j 2 + j D Á i j 2 + [ Á i ; Á j ] 2 + ::: Localizes to 6-dim version of Hitchin’s equations

25 Generating function Choose polarization K 0 ( X ) = ¤ = ¤ + © ¤ ¡ ¹ = ( p ; q ) 2 ¤ To make contact with GW-theory ¤ + = H 0 © H 2 ; ¤ ¡ = H 4 © H 6 Partition function Z gauge ( p ; Á ) = X q 2 ¤ ¡ D ( p ; q ) e i q ¢ Á

26 GW-DT Equivalence [Maulik, Nekrasov, Okounkov, Pandharipande] Consider the case of rank one, p = (1,0) (ideal sheaves) where Z gauge ( p ; Á ) = Z t op ( t ; ¸ ) Á = ( t ; ¸ ) 2 H 2 ( X ) © H 0 ( X )

27 Donaldson-Thomas Invariants U(1) gauge theory + singularities q=(d,n) n = c h 3 » T r F 3 d = c h 2 » T r F 2 i ns t an t ons t r i ngs Z gauge = X d ; n D ( d ; n ) e d t + n ¸

28 Strong-weak coupling GW ¸ ! 0 Z t op = exp X g ; d GW g ; d ¸ 2 g ¡ 2 e d t DT ¸ ! 1 Z gauge = X n ; d D n ; d e n ¸ e d t Two expansion of single analytic function?

29 Gopakumar-Vafa invariants M-theory limit virtual loops of M2 branes ¸ ! 1 ¸

30 GV Partition function Gas of 5d charged & spinning black holes Z ( ¸ ; t ) = Y n 1 ; n 2 d ; m ³ 1 ¡ e ¸ ( n 1 + n 2 + m ) + t d ´ ¡ N m d GV-invariants (integers) N m d » p d 3 ¡ m 2 Infinite products of Borcherds type. Automorphic properties?

31 Topological String Triality top. strings Gromov-Witten M-theory Gopakumar-Vafa gauge theory Donaldson-Thomas

32 Simplest Calabi-Yau

33 g constant maps

34 Stat-Mech: 3d Partitions GW GV DT

35 Melting Crystals Okounkov, Reshetikhin, Vafa, Nekrasov,...

36 OSV Conjecture [Ooguri, Strominger, Vafa] Consider the limit where p ! 1 Z gauge ( p ; Á ) » j Z t op ( t ; ¸ )j 2 p + i Á = µ t ¸ ; 1 ¸ ¶ 2 H 2 ( X ) © H 0 ( X )

37 Black hole Gauge theory D-brane

38 Black Hole Entropy (semi-classical) [ Bekenstein, Hawking ]

39 Microscopic counting (quantum) S ( p ; q ) = m i n Á f I m F t op ( p + i Á ) + q Á g OSV

40 Attractor Mechanism near-horizon moduli

41 4d Black Holes Gauge Theory Top. Strings large charges Attractor CY

42 B-model

43 Hitchin’s theory of 3-forms

44 Integral structure “attractive” CY’s Bohr-Sommerfeld quantization of moduli space M X

45 Example of OSV conjecture Local 2-torus in CY [ Vafa ] area of T 2 = t X

46 Covers of T 2, repr of S d ΣgΣg action of Z 2 twist field gas of branch points

47 Mirror symmetry: modular forms q = e 2 ¼ i t

48 N D4-branes U(N) Gauge Theory (m=1)

49 Two-dimensional U(N) Yang-Mills

50 Wilson loop

51 N free non-relativistic fermions Z gauge = X f erm i ons e ¡ ¸ E + i µ P C 2 = E = X i 1 2 p 2 i ; C 1 = P = X i p i

52 Ground state energy E 0 = I m ( F c l ) F c l = 1 ¸ 2 F c l 0 ( t ) + F c l 1 ( t ) = ¡ t 3 6 ¸ 2 + t 24

53 Black Hole states YM instantons Free fermion states

54 Hardy-Ramanuyan, Rademacher, Cardy Compute d(n) for large n? Modular invariance

55 Grand canonical partition function

56 ground state excited state

57 Large N limit: chiral factorization

58 Z t op ( t ; ¸ ) = I d x x Y p 2 Z ¸ 0 + 1 2 ³ 1 + xe p t + 1 2 ¸ p 2 ´³ 1 + x ¡ 1 e p t ¡ 1 2 ¸ p 2 ´ = exp X g ¸ 2 g ¡ 2 F g ( t ) quasi-mdoular form of wt 6g-6

59 Two conjectures, related by modular transformation? ¸ ! 1 = ¸ OSV Z ( p ; Á ) » j Z t op ( t ; ¸ )j 2 p ! 1 p + i Á = µ t ¸ ; 1 ¸ ¶ DT Z ( p ; Á ) = Z t op ( t ; ¸ ) p = 1 Á = ( t ; ¸ )

60 Rank zero, divisor CY X P p = ( 0 ; c 1 ) = ( 0 ; [ P ]) q = ( c h 2 ; c h 3 ) = ( d ; n ) Z gauge elliptic genus of modulus space M P

61 Elliptic Genus If M is a CY k-fold S 1 -equivariant  y -genus of the loop space LM weak Jacobi-form of wt 0 and index k/2 e lll ( M ;z ; ¿ ) e ll ( ¿ ; z + m¿ + n ) = e ¡ ¼ i d ( m 2 ¿ + 2 mz )= 2 e ll ( ¿ ; z ) e ll µ a¿ + b c¿ + d ; z c¿ + d ¶ = e ¼ i k cz 2 2 ( c¿ + d ) e ll ( ¿ ; z )

62 Elliptic Genus e lll ( M ;z ; ¿ ) = X d ; n D ( d ; n ) e 2 ¼ i d z e 2 ¼ i n¿ Fourier expansion Modular properties Z gauge ( t ; ¸ ) = e ll ( M P ; t ; ¸ )

63 Topological String Theory Universal, deep, but mysterious object that captures many interesting connections between physics and geometry.

64 Happy Birthday, Nigel!


Download ppt "Gauge Theory and Topological Strings Geometry Conference in honour of Nigel Hitchin - RHD, C. Vafa, E.Verlinde, hep-th/0602087 - J. de Boer, M. Chang,"

Similar presentations


Ads by Google