Download presentation
1
The Ambiguous Case for the Law of Sines
5.7 The Ambiguous Case for the Law of Sines
2
AMBIGUOUS Open to various interpretations Having double meaning
Difficult to classify, distinguish, or comprehend /ctr
3
Opposite sides of angles of a triangle
RECALL: Opposite sides of angles of a triangle Interior Angles of a Triangle Theorem Triangle Inequality Theorem /ctr
4
Triangles that do not have right angles
RECALL: Oblique Triangles Triangles that do not have right angles (acute or obtuse triangles) /ctr
5
RECALL: LAW OF SINE – 1 sin 1 /ctr
6
Sine values of supplementary angles are equal.
RECALL: Sine values of supplementary angles are equal. Example: Sin 80o = Sin 100o = /ctr
7
Law of Sines: The Ambiguous Case
Given: lengths of two sides and the angle opposite one of them (S-S-A) /ctr
8
Possible Outcomes Case 1: If A is acute and a < b
a. If a < b sinA a C b a h = b sin A b B A h c A B c NO SOLUTION
9
Possible Outcomes Case 1: If A is acute and a < b b. If a = b sinA
h = b sin A b h = a A c B 1 SOLUTION
10
Possible Outcomes Case 1: If A is acute and a < b
h = b sin A b. If a > b sinA C b a h a 180 - A B B c 2 SOLUTIONS
11
Possible Outcomes Case 2: If A is obtuse and a > b C a b A c B
ONE SOLUTION
12
Possible Outcomes Case 2: If A is obtuse and a ≤ b C a b A c B
NO SOLUTION
13
Determine the number of possible solutions for each triangle.
i) A=30deg a=8 b=10 ii) b=8 c = 10 B = 118 deg
14
Find all solutions for each triangle.
i) a = 4 b = 3 A = 112 degrees ii) A = 51 degrees a = 40 c = 50
15
EXAMPLE 1 Given: ABC where a = 22 inches b = 12 inches a>b
mA = 42o a>b mA > mB SINGLE–SOLUTION CASE (acute) Find m B, m C, and c.
16
sin A = sin B a b Sin B 0.36498 mB = 21.41o or 21o
Sine values of supplementary angles are equal. The supplement of B is B2. mB2=159o
17
mC = 180o – (42o + 21o) mC = 117o sin A = sin C a c c = inches SINGLE–SOLUTION CASE
18
sin A = sin B a b Sin B 1.66032 mB = ? Sin B > 1 NOT POSSIBLE !
Recall: – 1 sin 1 NO SOLUTION CASE /ctr
19
EXAMPLE 3 Given: ABC where b = 15.2 inches a = 20 inches b < a
mB = 110o b < a NO SOLUTION CASE (obtuse) Find m B, m C, and c.
20
sin A = sin B a b Sin B 1.23644 mB = ? Sin B > 1 NOT POSSIBLE !
Recall: – 1 sin 1 NO SOLUTION CASE /ctr
21
EXAMPLE 4 Given: ABC where a = 24 inches b = 36 inches a < b
mA = 25o a < b a ? b sin A 24 > 36 sin 25o TWO – SOLUTION CASE (acute) Find m B, m C, and c.
22
sin A = sin B a b Sin B 0.63393 mB = 39.34o or 39o
The supplement of B is B2. mB2 = 141o mC1 = 180o – (25o + 39o) mC1 = 116o mC2 = 180o – (25o+141o) mC2 = 14o
23
sin A = sin C a c1 c1 = 51.04 inches sin A = sin C a c2
/ctr
24
EXAMPLE 3 Final Answers: mB1 = 39o mC1 = 116o c1 = 51.04 in.
TWO – SOLUTION CASE /ctr
25
Find m B, m C, and c, if they exist.
SEATWORK: (notebook) Answer in pairs. Find m B, m C, and c, if they exist. 1) a = 9.1, b = 12, mA = 35o 2) a = 25, b = 46, mA = 37o 3) a = 15, b = 10, mA = 66o /ctr
26
Answers: 1)Case 1: mB=49o,mC=96o,c=15.78 Case 2:
2)No possible solution. 3)mB=38o,mC=76o,c= /ctr
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.