Download presentation
Presentation is loading. Please wait.
Published byGarey Barber Modified over 9 years ago
1
Coalescence of Five-dimensional Black Holes ( 5次元ブラックホールの合体 )
Ken Matsuno ( 松野 研 ) ( H. Ishihara , S. Tomizawa , M. Kimura )
2
コンパクトな余剰次元を持つブラックホール )
1. Introduction ( なぜ高次元か , 次元低下 , コンパクトな余剰次元を持つブラックホール ) 2. Coalescence of 5D Black Holes ( 漸近構造の違いを調べる )
3
1. Introduction
4
空間 3次元 時間 1次元 我々は 4次元時空 に住んでいる 量子論と矛盾なく , 4種類の力を統一的に議論する 弦理論 超重力理論 余剰次元 の効果が顕著 高次元ブラックホール ( BH ) に注目 高次元時空 上の理論 高エネルギー現象 強重力場
5
次元低下 高次元時空 ⇒ 有効的に 4次元時空 Kaluza-Klein model “ とても小さく丸められていて見えない ”
高次元時空 ⇒ 有効的に 4次元時空 Kaluza-Klein model “ とても小さく丸められていて見えない ” Brane world model “行くことが出来ないため見えない” 余剰次元方向 余剰次元方向 4次元
6
Brane ( 4次元時空 ) : 物質 と 重力以外の力 が束縛 Bulk ( 高次元時空 ) : 重力のみ伝播
Brane world model Bulk Brane Brane ( 4次元時空 ) : 物質 と 重力以外の力 が束縛 Bulk ( 高次元時空 ) : 重力のみ伝播 重力の逆2乗則から制限 ⇒ ( 余剰次元 ) ≦ 0.1 mm 加速器内で ミニ・ブラックホール 生成 ? ( 高次元時空の実験的検証 )
7
5-dim. Black Objects [ 以降、5次元時空に注目 ] 4次元 : 軸対称 , 真空
4次元 : 軸対称 , 真空 ⇒ Kerr BH with S2 horizon only 5次元 : 軸対称 , 真空 ⇒ Variety of Horizon Topologies Black Rings ( S2×S1 ) Black Holes ( S3 )
8
Asymptotic Structures of Black Holes
4D Black Holes : Asymptically Flat 5D Black Holes : Variety of Asymptotic Structures ( time ) ( radial ) ( angular ) Asymptotically Flat : Asymptotically Locally Flat : : 5D Minkowski : Lens Space : 4D Minkowski + a compact dim. Kaluza-Klein Black Holes
9
Kaluza-Klein Black Holes
4次元 Minkowski Compact S1 [ 4次元 Minkowski と Compact S1 の直積 ] 4次元 Minkowski
10
Squashed Kaluza-Klein Black Holes
Twisted S1 [ 4次元 Minkowski 上に Twisted S1 Fiber ] 4次元 Minkowski
11
異なる漸近構造を持つ5次元帯電ブラックホール解
5D 漸近平坦 BH ( Tangherlini ) 5D Kaluza-Klein BH ( Ishihara - Matsuno ) r+ r- r- r+ 4D Minkowski + a compact dim. 5D Minkowski
12
Two types of Kaluza-Klein BHs
同じ漸近構造 r- r+ r+ r- Point Singularity Stretched Singularity
13
Study of Five-dimensional Black Holes
Horizon Topologies Asymptotic Structures Five-dim. BHs : Variety of S3 , S3 / Zn ( Lens Space ), S2×S1 , … ex) Creation of Charged Rotating Multi-BHs in LHC ( Coalescence of these BHs ? ) Change of Horizon Topologies ? ( S3 + S3 ⇒ ? ) Distinguishable of Asymptotic Structures ? ( From Behavior of Horizon Areas ? )
14
2種類の漸近構造 ここでは 平坦空間上 Eguchi - Hanson 空間上 の 回転BH の 合体 : 5D Minkowski
: Lens Space ここでは 平坦空間上 Eguchi - Hanson 空間上 の 回転BH の 合体 ( 本研究が初めて )
15
2. ブラックホールの合体
16
Multi-Black Holes Multi-BHs : ( mass ) = ( charge ) 重力場 (引力) とマックスウェル場 (斥力) のつりあい
17
Multi-Black Holes Time
18
宇宙項 Time
19
時間反転 Time
20
BHの合体 Time
21
BHの合体 Time
22
System 5D Einstein-Maxwell system with Chern-Simons term and positive cosmological constant
23
Rotating Solution on Eguchi-Hanson space
Specified by ( m1 , m2 , j )
24
Three-sphere S3 ( S2 base ) ( twisted S1 fiber ) S1 S3 S2
25
Three-sphere S3 ( S2 base ) ( twisted S1 fiber ) S2×S1 S3
26
( ex. Changing of Horizon Areas )
Lens space S3 / Zn ( S2 base ) ( S1 / Zn fiber ) S1 / Zn S1 S2 S3 S2 S3 / Zn ( ex. Changing of Horizon Areas )
27
Eguchi-Hanson space 4D Ricci Flat ( Rij = 0 )
z S2 - bolt 2 NUTs on S2 - bolt at ri = ( 0 , 0 , zi ) : 両極 ( Fixed point of ∂/∂ζ ) Asymptotic Structure ( r ~ ∞) : R1×S3 / Z2
28
Rotating Solution on Eguchi-Hanson space
For Suitable ( m1 , m2 , j )
29
“ Mapping Rules ” of parameters ( mi , j )
[ 漸近的に Lens Space ( R1×R1×S3 / Z2 ) な時空 ] ( on EH space ) Early Time Late Time 2(m1 + m2) 8 j m1 , j m2 , j + S3 S3 S3 / Z2 [ 漸近平坦 ( R1×R1×S3 ) な時空 ] ( on Flat space ) m1 + m2 2 j m1 , j m2 , j + S3 S3 S3
30
“ Mapping Rules ” of parameters ( m , j )
m = m1 = m2 [ 漸近的に Lens Space ( R1×R1×S3 / Z2 ) な時空 ] ( on EH space ) Early Time Late Time 4 m 8 j m , j m , j + S3 S3 S3 / Z2 [ 漸近平坦 ( R1×R1×S3 ) な時空 ] ( on Flat space ) 2 m 2 j m , j m , j + S3 S3 S3
31
“ Mapping Rule ” of ( m , j ) for coalescence on BHs on EH space
( mλ2 , j 2 / m 3 ) ⇒ ( 4 mλ2 , j 2 / m 3 ) ( we set m = m1 = m2 ) j2 / m3 mλ2 ODEC : Two S3 BHs at Early time OAFC : Single S3 / Z2 BH at Late time OABC : Coalescence of 2 BHs ( S3 → S3 / Z2 )
32
“ Mapping Rules ” of parameters ( m , j )
m = m1 = m2 [ 漸近的に Lens Space ( R1×R1×S3 / Z2 ) な時空 ] ( on EH space ) Early Time Late Time 4 m 8 j m , j m , j + S3 S3 S3 / Z2 [ 漸近平坦 ( R1×R1×S3 ) な時空 ] ( on Flat space ) 2 m 2 j m , j m , j + S3 S3 S3
33
“ Mapping Rule ” of ( m , j ) for coalescence on BHs on Flat space
( mλ2 , j 2 / m 3 ) ⇒ ( 2 mλ2 , ( j 2 / m 3 ) / 2 ) ( we set m = m1 = m2 ) j2 / m3 mλ2 ODEC : Two S3 BHs at Early time OGKL : Single S3 BH at Late time OGHC : Coalescence of 2 BHs ( S3 → S3 )
34
Comparison of Horizon Areas
Early Time m , j m , j + S3 S3 Late Time 4 m 8 j 2 m 2 j S3 S3 / Z2 ( Lens space S3 / Z2 )
35
[ 漸近的に Lens Space ( R1×R1×S3 / Z2 ) な時空 ]
Horizon Area の変化 [ 漸近的に Lens Space ( R1×R1×S3 / Z2 ) な時空 ] Early Time Late Time 4 m 8 j m , j m , j + S3 S3 S3 / Z2 [ 漸近平坦 ( R1×R1×S3 ) な時空 ] 2 m 2 j m , j m , j + S3 S3 S3
36
Comparison of Horizon Areas A(l) / A(e) > 1
漸近平坦な時空 漸近的に lens space な時空 j2 / m3 j2 / m3 j2 / m3 j2 / m3 j2 / m3 mλ2 mλ2 mλ2 mλ2 mλ2
37
[ 漸近的に Lens Space ( R1×R1×S3 / Z2 ) な時空 ]
Horizon Area の変化 [ 漸近的に Lens Space ( R1×R1×S3 / Z2 ) な時空 ] Early Time Late Time 4 m 8 j m , j m , j + S3 S3 S3 / Z2 [ 漸近平坦 ( R1×R1×S3 ) な時空 ] 2 m 2 j m , j m , j + S3 S3 S3
38
[ 漸近的に Lens Space ( R1×R1×S3 / Z2 ) な時空 ]
Horizon Area の変化 [ 漸近的に Lens Space ( R1×R1×S3 / Z2 ) な時空 ] Early Time Late Time 4 m 8 j m , j m , j + S3 S3 S3 / Z2 [ 漸近平坦 ( R1×R1×S3 ) な時空 ] 2 m 2 j m , j m , j + S3 S3 S3
39
Comparison of Horizon Areas AEH(l) / AFlat(l)
j2 / m3 j → 0 mλ2
40
Comparison of Horizon Areas AEH(l) / AFlat(l) | j → 0
41
Comparison of Horizon Areas AEH(l) / AFlat(l)
λ→ 0 j2 / m3 mλ2
42
Comparison of Horizon Areas AEH(l) / AFlat(l) | λ→ 0
43
Conclusion We construct
5D new Rot. Multi-BH Sol.s on Eguchi-Hanson space Coalescence of Rotating BHs with Change of Horizon Topology : S3 ⇒ S3 / Z2 ( Lens Space ) Comparing with that on Flat space without change of Horizon Topology : S3 ⇒ S3 Horizon Areas の振る舞い 回転の影響 漸近構造を区別可能
44
Measurement of Extra Dimension by Kaluza-Klein Black Holes
Future Works Measurement of Extra Dimension by Kaluza-Klein Black Holes ( Gravity Probe B 実験結果から 余剰次元サイズ を見積もる ) Rotating Squashed Multi-Black Holes with Godel Parameter ( コンパクトな余剰次元を持つ 多体BHの合体 )
45
Large Scale Extra Dimension in Brane world model
D次元時空 ( D ≧ 4 ) ( 余剰次元サイズ L ) : D次元重力定数 : D次元プランクエネルギー When EP,D ≒ TeV , D = 6
46
⇒ mc2 ≧ TeV ≒ (proton mass)×103 ミニ・ブラックホール !
ミニ・ブラックホールの形成条件 コンプトン波長 ブラックホール半径 [ 4次元 ] ≫ 1 GeV : 1 Proton [ D次元 ] 例. LHC 加速器内 : EP,D ≒ TeV ⇒ mc2 ≧ TeV ≒ (proton mass)× ミニ・ブラックホール !
47
Kaluza-Klein model L 加速器実験から制限 ⇔ L ≒ 10 -17 cm 余剰次元 : 小さくコンパクト化 ⇒ 量子力学
[ 例. 5次元 ] 余剰次元 余剰次元を観測する為に必要な 励起エネルギー 加速器実験から制限 ⇔ L ≒ cm
48
2. 歪んだ Kaluza-Klein Black Holes
49
Far region from BHs : Effectively 4D spacetime
Background String Theory Brane world scenario Spacetime with large scale extra dim. Creation of mini-black holes in the LHC Near horizon region : Higher-dim. spacetime Far region from BHs : Effectively 4D spacetime
50
Black Holes with a Compact Dimension
Higher-dim. Multi-BHs with compact extra dimensions ( R.C. Myers (1987) ) 5D Kaluza-Klein Black Holes Near horizon region : ~ 5D black hole Far region : ~ 4D black hole × S1
51
5D Einstein-Maxwell-Chern-Simons system
( Bosonic part of the ungauged SUSY 5-dim. N=1 SUGRA )
52
Solutions 角度成分
53
Squashed S3 ( S2 base ) ( Twisted S1 fiber ) S1 S1 S2 S3 S2 Sq. S3
( ex. Shape of Horizons )
54
Solutions Squashed S3
55
Spatial cross section of r = const. surface Σr
Squashed S3 Spatial cross section of r = const. surface Σr S2 S1 Oblate ( k > 1 ) Round S3 ( k = 1 ) Prolate ( k < 1 )
56
inner horizon r- : Prolate
Near Horizon Region Shapes of squashed S3 horizons r = r± outer horizon r+ : Oblate inner horizon r- : Prolate ( degenerate horizon r+ = r- : round S3 )
57
Coord. Trans. : r ⇒ ρ ( r = r∞ ⇒ ρ= ∞ )
Far Region Coord. Trans. : r ⇒ ρ ( r = r∞ ⇒ ρ= ∞ )
58
Asymptotically Locally Flat
Far Region ρ⇒ ∞ 4次元 Minkowski Twisted S1 Asymptotically Locally Flat ( a twisted constant S1 fiber bundle over 4D Minkowski )
59
Whole Structure 0 < r < r∞ Inner Horizon r = r- Singularity
Outer Horizon r = r+ 0 < r < r∞ Spatial Infinity r = r∞
60
Two Regions of r coordinate
Here, we consider the region Furthermore, we can consider the region for BH
61
Two types of Singularities
Point Singularity : shrink to a point as Stretched Singularity : S2 → 0 and S1 → ∞ as
62
Two types of Black Holes
Point Stretched Black Hole Naked Singularity
63
2. の まとめ We construct charged static
Kaluza-Klein black holes with squashed S3 horizons in 5D Einstein-Maxwell theory These black holes asymptote to the effectively 4D Minkowski with a compact extra dimension at infinity We obtain two types of Kaluza-Klein black holes related to the shapes of the curvature singularities Point Singularity & Stretched Singularity
64
Asymptotic Behaviors r ≒ ri 近傍 r ≒ ∞ ( 遠方 ) Klemm – Sabra 解
65
: outgoing null expansion
Klemm-Sabra Solution ( S3 ) Specified by ( m , j ) Killing Vector Fields : ∂/∂ψ ∂/∂φ BH Horizon x+ in this coord.s is given by sol.s of : outgoing null expansion x についての3次方程式 ⇒ ( m , j ) に制限
66
Region of ( m , j ) No Horizon Black Hole
67
Absence of Closed Timelike Curves ( CTCs )
No CTC for x > x+ > 0 ⇔ ( ψ , φ ) part of metric g2D has no negative eigenvalue ⇔ gψψ (x) > 0 and det g2D (x) > 0 In this case , gψψ (x+) > 0 and det g2D (x+) > 0 No CTC ! x の単調増加関数
68
Early Time S3 S3 Rot. 2 BHs at Early time [ Specified by ( mi , j ) ]
BH Horizon in this coord.s is given by sol.s of ( outgoing null expansion ) For suitable ( mi , j ) S3 S3 ( outer trapped small S3 ) Rot. 2 BHs at Early time
69
Late Time S3 / Z2 Rot. 1 BH at Late time
( Lens space S3 / Z2 ) [ Specified by ( 2( m1 + m2 ) , 8 j ) ] BH Horizon in this coord.s is given by sol.s of ( outgoing null expansion ) For suitable ( mi , j ) S3 / Z2 ( outer trapped large S3 ) Rot. 1 BH at Late time
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.