Presentation is loading. Please wait.

Presentation is loading. Please wait.

March 24, 20051 Critical Design Review Michael Caldwell Jeff Haddin Asif Hossain James Kobyra John McKinnis Kathleen Mondino Andrew Rodenbeck Jason Tang.

Similar presentations


Presentation on theme: "March 24, 20051 Critical Design Review Michael Caldwell Jeff Haddin Asif Hossain James Kobyra John McKinnis Kathleen Mondino Andrew Rodenbeck Jason Tang."— Presentation transcript:

1 March 24, 20051 Critical Design Review Michael Caldwell Jeff Haddin Asif Hossain James Kobyra John McKinnis Kathleen Mondino Andrew Rodenbeck Jason Tang Joe Taylor Tyler Wilhelm AAE 451: Team 2

2 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 20052 Overview Walkaround Aircraft 3-View Constraint Diagram Physical Properties Aerodynamics Dynamics & Controls Structures, Weights, & Landing Gear Propulsion Unique Aspects of the Design Constraint Diagram Revisited

3 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 20053 Walkaround

4 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 20054 5.24 ft 3.00 ft Aircraft 3-View Mission Requirements 15 min. endurance Take-off distance ≤ 60 ft. V stall ≤ 15 ft/s V loiter ≤ 25 ft/s 35 ft. turn radius Weight1.96 lbs Wingspan5.24 ft Length3.00 ft Height1.50 ft Aspect Ratio5.24 Cruise Speed23 ft/s Max Thrust1.00 lb

5 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 20055 Constraint Diagram Design Space Design Point Wing Loading:  0.376 lbf/ft2 Power Loading:  32.74 lbf/hp LiPoly Weight: 1.97lb f Wing Area: 5.24 ft 2 Power: 0.060 hp Takeoff

6 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 20056 Tabular Summary of Parameters Wing Area5.24 ft 2 Canard Area1.432 ft 2 Tail Area (each)0.915 ft 2 Wetted Area23.08 ft 2 Mean Chord1.00 ft Wing Taper Ratio0.7 Landing GearSkis (interchangeable) Motor TypeBrushless Wing Dihedral 4º Canard Dihedral-4º Center of Gravity1.70 ft Neutral Point1.85 ft Static Margin14.80% Foam & Balsa Construction Pitch Rate Feedback to Elevator

7 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 20057 Concept Selection Objectives Selected mission objectives Assigned rankings (out of 120 possible points)

8 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 20058 Weighted Objectives For each design, objectives are ranked either:  1 - Poor, 3 - Average, 9 - Excellent Each objective score is multiplied by corresponding weighted average Scores for each design concept are totaled

9 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 20059 Pugh’s Method All other designs’ objectives are compared to design 1 (datum)  + (better), - (worse), s (same) Sum of each scoring criteria taken Design strengths and weaknesses determined

10 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200510 Aerodynamics Overview Airfoil Selection Twist Distribution Mathematical Model Launch Conditions L/D MAX

11 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200511 SELIG – WORTMANN COMPARISON Selig 1210: M.S.Selig,J.J.Guglielmo,A.P.Broeren and P.Giguere,"Summary of Low-Speed Airfoil Data, Volume 1 – Wind Tunnel Data Wortmann FX 63-137: M.S.Selig,J.F.Donovan and D.B.Fraser,"AIRFOIL AT LOW SPEEDS – Wind Tunnel Airfoil Selection: Wing

12 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200512 Airfoil Selection: Wing Wortmann FX63-137 Wortmann FX 63-137: M.S.Selig,J.F.Donovan and D.B.Fraser,"AIRFOIL AT LOW SPEEDS – Wind Tunnel

13 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200513 Airfoil Selection: Canard NACA 0012

14 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200514 Airfoil Selection: Vertical Tails Flat Plate  Non-Lifting Surface  No Volume Needed  Ease of Construction  Light Weight

15 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200515 Wing Twist Distribution Root: 1 o Tip: -7 o

16 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200516 Mathematical Model Prandtl’s Classical Lifting Line Theory  Elliptical Loading Parasite Drag – Component Buildup Method

17 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200517 Mathematical Model From Prandtl’s Classical Lifting-Line Theory

18 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200518 Mathematical Model Re=147,820

19 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200519 Mathematical Model C Mo calculated using Roskam Vol. VI and C Mα calculated from flatearth.m

20 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200520 Launch Conditions α Lo = -9 o V take-off = 1.2V stall = 18 ft/s Climb Angle = 20 o Angle of Attack = 4.5 o -9 o 20 o 4.5 o

21 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200521 L/D MAX L/D MAX =10.75 α L/Dmax =0.60 o Re=147,820

22 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200522 L/D MAX L/D MAX Velocity Loiter Straight:  V L/Dmax = 21.97 ft/s Re=147,820 Operation Point

23 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200523 Dynamics & Controls Overview Tail Sizing Control Surface Sizing Static Margin Trim Diagram Dihedral Angle Feedback System

24 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200524 Tail Sizing (Class 1) Constants  c HT = 0.50  c VT = 0.05  C w = 1 ft  S w = 5.24 ft  L HT = 1.83 ft  L VT = 0.75 ft Horizontal tail (canard)  Area = 1.432 ft 2 Vertical tail  Area = 0.915 ft 2 (each)

25 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200525 Tail Sizing (Class 2) Vertical Tail  Plot C nβ versus S vt  S vt = 0.912 ft 2

26 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200526 Tail Sizing (Class 2) Horizontal Tail  Plot X cg and X ac versus S ht  S ht = 1.36 ft 2

27 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200527 Canard & Tail Sizing Class 1 SizingClass 2 Sizing Canard Area S ht 1.43 ft 2 1.36 ft 2 Vertical Tail Area S vt (each) 0.92 ft 2 0.91 ft 2

28 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200528 Control Surface Sizing Span (ft)Chord (ft)Area (ft 2 ) Aileron (each) 1.400.200.28 Elevator 1.000.33 Rudder (each) 0.750.580.44

29 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200529 Desired Static Margin Static Margin (Raymer)  Typical Fighter Jet: 0-5%  Typical Transport Aircraft = 5-10%  Model aircraft usually more stable Goal: Static Margin = 15%

30 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200530 Actual Static Margin X cg = 1.70 ft X np = 1.85 ft Static Margin = 14.80%

31 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200531 C L Max Trimmed Maximum C L (x ref = x cg ) α CL Max α = 0 o Trim Diagram

32 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200532 Outer Panel Dihedral Wing: 4 deg outer panel dihedral, B=4 deg and x at 0.9 ft Canard: -4 deg outer panel dihedral, B=4 deg and x at 0.08 ft Dihedral Angle

33 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200533 Dihedral Angle EVD of the wing and canard: Wing EVD: Canard EVD:

34 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200534 Loop Closure Description Pitch Rate feedback to the Elevator Objective: Establish longitudinal stability by using pitch rate feedback by varying damping ratio of the short period mode from 0.83 to 0.99.

35 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200535 Block Diagram H e (s) q(s)/  e (s) H (s)K  Pilot Input Elevator Servo Aircraft  e (s ) q(s) + _ Pitch Rate Gyro Feedback Gain

36 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200536 Aircraft TF / Natural Frequency and Damping Ratio Aircraft Transfer Function (Flat Earth Predator) Undamped Natural Frequency (Short Period) Damping Ratio (Short Period)

37 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200537 Gain Calculation, k Gain Calculation: - Flat Earth Predator - SISOTOOL k = 0.0857 - Root Locus Plot For k = 0 For k = 0.0857

38 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200538 Root Locus

39 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200539 Root Locus

40 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200540 Gyro and Servo Selection Futaba GYA350 gyro  Weight: 0.92 ounces  Remote gain function JR S241 sub micro servos  Weight: 0.32 ounces  Torque: 17 oz/in

41 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200541 Structures Overview Material Properties Structures Landing Gear Center of Gravity Weight and Cost Estimation V-n Diagram Wing Loading Analysis

42 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200542 Material Properties Density (lb f /ft 3 )Young’s Modulus (ksi)Yield Stress (psi) Balsa116251725 Spruce3415008600 EPS Foam1.5320-36072.5 EPP Foam1.310004000 Epoxy0.0625 lb/ft 2 50014500 Ultrakote0.0156 lb/ft 2 N/A Values from Fall ’04 AAE 451 projects and http://www.matweb.com

43 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200543 Structural Geometry Primarily EPP Foam Balsa fuselage structures

44 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200544 Wing – Fuselage Attachment

45 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200545 Fuselage Structure Formers  Outer Fuselage (each): Three - 1” radius  Main Fuselage: Four - 2” radius Stringers  Outer Fuselage (each): Seven – 1/8” x 1/8” x 36” One – 3/8” x 1/2” x 36” (for landing gear mounts)  Main Fuselage: Eight – 1/4” x 1/4” x 20”

46 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200546 Tail Structure Flat Plate  Non-Lifting Surface  No Volume Needed  Ease of Construction  1/8” Balsa – Lightweight  EPP Foam Rudder

47 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200547 Landing Gear Wire mounting  Rigid  Lightweight  Inexpensive  Easy to construct Interchangeable Smooth takeoff and landing on AstroTurf ® Pictures courtesy of http://www.dubro.com

48 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200548 Location  Front gear by canard  Back gear by wing Configuration  Wire strut attached to stringer in outer fuselage with mounting bracket  Interchangeable with wheels, skis, and floats attached to mounting blocks Gear Configuration Pictures courtesy of http://www.dubro.com Fuselage Attachment Wheel/Ski/Float Attachment

49 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200549 Weight Estimation

50 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200550 Cost Estimation

51 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200551 V-n Diagram Level Flight Turning Flight Max Load Factor V dive ~ 50% higher than V cruise n max =2.7778-g @ V loiter = 25 ft/sec Typical limit load factors for general aviation (n positive = 3.0-g, n negative = -1.5-g) from Raymer, Daniel P., Aircraft Design: A Conceptual Approach p.407

52 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200552 Wing Loading Analysis Analysis  Load Distribution and Maximum Wing Loading  Maximum Wing Root Bending Moment  Maximum Torsional Moment  Maximum Wing Tip Deflection  Maximum Bending Stress

53 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200553 Bending Worst case simplification  Cantilevered beam  Negligible weight, outer fuselage mass/support  Elliptical load distribution

54 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200554 Twisting Moment due to lift found from moment coefficient

55 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200555 Constraints Twisting: less than one degree of twist Bending: bending stress less than EPP foam yield stress (w/ safety factor of 2)

56 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200556 Analysis Maximum wing load:  1.97 lbs of lift, elliptical loading, load factor of 2.77 yields 5.45 lbs Maximum bending moment (at root):  3.623 ft-lbs Maximum torsional moment (from C m ):  0.194 ft-lbs

57 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200557 Results Maximum wing stress: 361.80 psi Maximum tip deflection: 0.16 in. Maximum rotation: 0.13 degrees

58 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200558 Moments and Products of Inertia Balsa Components: Volume = 86.51099 (+/- 0.00014) cubic inches Volume Centroid = 4.025129,2e-007,1.06559 (+/- 8.6e-006,2.2e- 006,1.2e-005) Volume Moments: Volume Moments of Inertia about World Coordinate Axes Ix: 3479.97 (+/- 0.0035) Iy: 9483.726 (+/- 0.014) Iz: 11292.75 (+/- 0.012) Volume Moments of Inertia about Centroid Coordinate Axes Ix: 3381.738 (+/- 0.011) Iy: 7983.872 (+/- 0.045) Iz: 9891.13 (+/- 0.035) Foam Components: Volume = 1048.1777 (+/- 0.00012) cubic inches Volume Centroid = 2.468645,1.1e-005,0.7137613 (+/- 3.5e- 006,2.7e-006,2.4e-006) Volume Moments: Volume Moments of Inertia about World Coordinate Axes Ix: 222524.954 (+/- 0.0066) Iy: 98029.872 (+/- 0.043) Iz: 317314.68 (+/- 0.042) Volume Moments of Inertia about Centroid Coordinate Axes Ix: 221990.954 (+/- 0.017) Iy: 91108.06 (+/- 0.11) Iz: 310926.87 (+/- 0.097) Calculated from CAD Model Multiply by material density to determine Mass MOI

59 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200559 Propulsion Overview Propeller Selection Component Trade Study Motor & Battery Selection

60 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200560 Prandtl & Goldstein

61 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200561 Propeller Efficiency and Advance Ratio Operation Range  J = 0.35 - 0.45

62 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200562 Thrust Coefficient and Advance Ratio

63 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200563 Propeller Efficiency and Advance Ratio

64 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200564 Propeller Selection

65 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200565 Component Trade Study Graupner Speed 500 60% too powerful, unreliable data Each “Tier” represents a battery / motor combination More selection with Li & Brushless Connectors for brushed motors and Li batteries are not compatible. It would not be wise to have a Li & brushed combination. Our Aircraft needs to weigh less than 32 oz www.hobby-lobby.com www.balsapr.com Our Aircraft

66 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200566 Thrust, Power, and Endurance Airspeed Amps “Sedate” Mission 15min Airspeed Amps “Trainer” Mission 23min

67 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200567 Motor & Battery Selection ComponentsProp 2 Code Calculates near 900mAh necessary to fly mission Fails to include component energy requirements Components need approximately 150mAh across our mission 1050mAh battery necessary Kokam 1200mAh battery chosen on grounds of weight & preferred vendors

68 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200568 Unique Aspects of the Design Twin Boom Design EPP Foam Robust Interchangeable Landing Gear Brushless Motor 3-Bladed Prop Alternative

69 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200569 Remaining Design Problems Updating SURFCAM Possible Wing Area Updates Landing Gear Position

70 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200570 Constraint Diagram Revisited Design Space Current Design Point Weight:  2.06 Lbf Wing Area  5.30 ft 2 Power:  0.06 hp Wing Loading:  0.39 lbf/ft2 Power Loading:  34.33 lbf/hp Desired Design Point Takeoff

71 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200571 Summary Walk Around Aircraft 3-View Constraint Diagram Physical Properties Aerodynamics Dynamics & Controls Structures, Weights, & Landing Gear Propulsion Unique Aspects of the Design Constraint Diagram Revisited

72 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200572 Questions?

73 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200573 Appendix

74 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200574 Turning Conditions

75 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200575 L/D Mathematical Model * Raymer, Daniel P., Aircraft Design: A Conceptual Approach p.493

76 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200576 L/D MAX L/D MAX Velocity Loiter Straight:  V L/Dmax = 21.97 ft/s Loiter Turn:  V L/Dmax = 23.12 ft/s Re=147,820

77 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200577 Effect of Control Surface Deflection: Lift Roskam,Jan, Airplane Design PartVI: Prelimenary Calculation of Aerodynamic, Thrust, and Power Characteristics, 2000

78 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ]12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 March 24, 200578 Effect of Control Surface Deflection: Pitching Moment Roskam,Jan, Airplane Design PartVI: Prelimenary Calculation of Aerodynamic, Thrust, and Power Characteristics, 2000


Download ppt "March 24, 20051 Critical Design Review Michael Caldwell Jeff Haddin Asif Hossain James Kobyra John McKinnis Kathleen Mondino Andrew Rodenbeck Jason Tang."

Similar presentations


Ads by Google