Download presentation
Published byHilda Gertrude Burns Modified over 9 years ago
1
Pre-Calculus 2-6A: page 160 #’s 1-23odd, 45
2
Find the standard equation of any parabola that has vertex V.
V(-3,1) ) V(0,-2) y = a(x+3) y = a(x)2 - 2
3
Express f(x) in the form a(x-h)2+k
5) f(x) = -x2 – 4x – 5 7) f(x) = 2x2 – 16x + 35 y = -(x2 + 4x + ___) – 5 + ___ y = 2(x2 – 8x + ___) ____ y = -(x + 2)2 – 1 y = 2(x – 4)2 + 3
4
Express f(x) in the form a(x-h)2+k
9) f(x) = -3x2 – 6x – 5 11) f(x) = -3/4x2 + 9x - 34 y = -3(x2 + 2x + ___) – 5 + ___ y = -3/4(x2 – 12x + ___) ___ y = -3(x + 1)2 – 2 y = -3/4(x – 6)2 – 7
5
a) Use the quad formula to find the zeros b) Find the maximum or minimum value c) Graph
f(x) = x2 – 6x a) b)
6
a) Use the quad formula to find the zeros b) Find the maximum or minimum value c) Graph
15) f(x) = -12x2 + 11x + 15 a) b)
7
a) Use the quad formula to find the zeros b) Find the maximum or minimum value c) Graph
17) f(x) = 9x2 + 24x + 16 a) b)
8
a) Use the quad formula to find the zeros b) Find the maximum or minimum value c) Graph
19) f(x) = x2 + 4x + 9 a) b)
9
a) Use the quad formula to find the zeros b) Find the maximum or minimum value c) Graph
21) f(x) = -2x2 + 16x - 26 a) b)
10
Find the standard equation of the parabola.
y = 1/8(x – 4 )2 - 1
11
45) One thousand feet of chain-link fence is to be used to construct six animal cages, as shown in the figure. Express the width y as a function of the length x. y(x) = 250 – ¾x b) Express the total enclosed area A of the cages as a function of x. A(x) = x(250 – ¾x) Find the dimensions that maximize the enclosed area. 166 2/3 by 125 ft
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.