Download presentation
Presentation is loading. Please wait.
Published byBeverly Booth Modified over 9 years ago
1
Determination of radiative neutron capture cross sections for unstable nuclei by Coulomb dissociation H. Utsunomiya (Konan University) Outline 1.Methodology of the SF method 2.Applications with real photons 3. Applications with virtual photons RIKEN Seminar Nov. 1, 2011
2
Collaborators H. Utsunomiya a), H. Akimune a), T. Yamagata a), H. Toyokawa c), H. Harada d), F. Kitatani d), Y. -W. Lui e), S. Goriely b) I. Daoutidis b), D. P. Arteaga f), S. Hilaire g), and A. J. Koning h) a)Department of Physics, Konan University, Japan b)Institut d’Astronomie et d’Astrophysique, ULB, Belgium c) National Institute of Advanced Industrial Science and Technology, Japan d) Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki 319-1195, Japan e) Cyclotron Institute, Texas A&M University, USA f) Institut de Physique Nucléaire, Université Paris-Sud, France g) CEA,DAM, DIF, Arpajon, France h) Nuclear Research and Consultancy Group, The Netherlands
3
Radiative neutron capture cross sections for unstable nuclei in nuclear astrophysics Direct measurements at CERN n-TOF, LANSCE-DANCE, Frankfurt-FRANZ and J-Parc ANNRI facilities can target some of unstable nuclei along the valley of -stability if samples can be prepared. ---> s-process Indirect experimental method is called in for unstable nuclei along the valley of -stability ---> s-process neutron-rich region ---> r-process surrogate reaction technique ANY OTHER?
4
follows the statistical model of the radiative neuron capture in the formation of a compound nucleus and its decay by using experimentally- constrained SF. -ray strength function method H. Utsunomiya et al., PRC80 (2009) n + A X A+1 X E, J, A X(n, ) A+1 X Radiative neutron capture continuum SF NLD decay process
5
Total transmission coefficient - ray strength function nuclear level density X=E, M =1, 2, … SF method neutron resonance spacing low-lying levels source of uncertainty Hauser-Feshbach model cross section for A X(n, ) A+1 X After integrating over J and π
6
-ray strength function: nuclear statistical quantity interconnecting (n, ) and ( ,n) cross sections in the HF model calculation n+ A X A+1 X E, J, A X(n, ) A+1 X A+1 X( ,n) A X Photoneutron emission Radiative neutron capture Brink Hypothesis continuum
7
SnSn GDR PDR, M1 Structure of -ray strength function Primary strength E1 strength in the low- energy tail of GDR Extra strengths 6 – 10 MeV
8
SnSn GDR PDR, M1 ( ,n) ( , ’) Particle - coin. CD Oslo method R. Schwengner A. Zilges M. Guttormsen (p,p’) A. Tamii P. von Neumann-Cosel A. Tamii P. von Neumann-Cosel A. Tonchev
9
SnSn ( ,n) GDR Methodology of SF method STEP 1 Measurements of ( ,n) c.s. near Sn A-1 A A ( ,n) SF STEP 1
10
SnSn Methodology of SF method STEP 2 Normalization of SF Extrapolation of SF by models SnSn ( ,n) GDR A-1 A A ( ,n) SF STEP 1
11
JUSTIFICATION BY REPRODUCING KNOWN (n, ) C.S. Methodology of SF method STEP 2 known (n, ) SnSn SnSn ( ,n) GDR A-1 A A ( ,n) SF STEP 1
12
neutron capture by unstable nucleus Methodology of SF method STEP 3 (n, ) to be deduced A+1 A+2 ( ,n) STEP 3 A+1 X(n, ) A+2 X known (n, ) A-1 A A ( ,n) STEP 1 STEP 2 Extrapolation is made in the same way as for stable isotopes. ( ,n) GDR SnSn STEP 1 STEP 2
13
6 6 Sn 116 117 118119120 121 27 h 122 123 129 d 124 105 106 107 6.5 10 6 y 108 Pd 909192 93 1.53 10 6 y 94 95 64 d 96 Zr 77 78 79 2.95 10 3 y 80 Se 76 75 120 d 89 3.27 d 104 6 6 115 Applications LLFP (long lived fission products) nuclear waste Astrophysical significance Present ( ,n) measurements Existing (n, ) data 7 3 5 4 H.U. et al., PRC82 (2010) H. Utsunomiya et al., PRC80 (2009) H.U. et al., PRL100(2008) PRC81 (2010) To be published (n, ) c.s. to be deduced
14
Inverse Compton Scattering = E e /mc 2 “photon accelerator” Laser Compton scattering -ray beam
15
=1064, 532 nm AIST (National Institute of Advanced Industrial Science and Technology)
16
Detector System Triple-ring neutron detector 20 3 He counters (4 x 8 x 8 ) embedded in polyethylene
17
909192 93 1.53 10 6 y 94 95 64 d 96 Zr 89 3.27 d Applications LLFP (long lived fission products) nuclear waste Astrophysical significance Present ( ,n) measurements 5 Measurements of ( ,n) cross sections Justification of SF with existing (n, ) data STEP 1 STEP 2 Investigation of SF that reproduces ( ,n) cross sections Extrapolation of SF below S n STEP 3 Prediction of (n, ) cross sections for 93 Zr and 95 Zr
18
STEP 1 – ( ,n) 断面積 の中性子しきい値近傍での高精度測定 91Zr 92Zr 94Zr 96Zr
19
Application STEP 2 – Extrapolation of SF to the low-energy region HFB+QRPA E1 strength supplemented with a giant M1 resonance in Lorentz shape E o ~ 9 MeV, ~ 2.5 MeV, o ~ 7 mb ~ 2% of TRK (Thomas-Reiche-Kuhn) sum rule of GDR HFB+QRPA + Giant M1 92Zr
20
Application STEP 2 – Justification of the adopted SF TALYS code of the HF model
21
Application STEP 2 – Justification of the adopted SF
22
93 Zr[T 1/2 =1.5×10 6 y] Results for Zr isotopes long-lived fission product nuclear waste
23
95 Zr[T 1/2 =64 d] s-process branching 30-40% uncertainties
24
Comparison with the surrogate reaction technique Forssèn et al., PRC75, 055807 (2007) 93Zr(n, )94Zr 95Zr(n, )96Zr 1. The surrogate reaction technique gives larger cross sections by a factor of ~ 3 than the SF method. The surrogate reaction technique gives similar cross sections to those given by the SF method provided that a choice is made of the Lorentian type of SF. Zr isotopes
25
6 6 Sn 116 117 118119120 121 27 h 122 123 129 d 124 6 6 115 Applications 7
26
STEP 1 Measurement of ( ,n) cross sections Sn isotopes H. Utsunomiya et al., PRC80 (2009)
27
HFB+QRPA E1 strength supplemented with a pygmy E1 resonance in Gaussian shape E o ~ 8.5 MeV, ~ 2.0 MeV, o ~ 7 mb ~ 1% of TRK sum rule of GDR STEP 2 – Extrapolation of SF to the low-energy region HFB+QRPA + PDR
28
SF for Sn isotopes Toft et al., PRC 81 (2010) PRC 83 (2011) Comparison with the Oslo method
29
STEP 2 – Justification of the extrapolated SF
30
STEP 3 – Statistical model calculations of (n, ) cross sections for radioactive nuclei 121 Sn[T 1/2 =27 h] 123 Sn[T 1/2 =129 d] Uncertainties: 30-40% Uncertainties: a factor of 3
31
105 106 107 6.5 10 6 y 108 Pd 104 Applications LLFP (long lived fission products) nuclear waste Astrophysical significance 3
32
STEP 1 Measurement of ( ,n) cross section Pd isotopes
33
SF for 108 Pd STEP 2 – Extrapolation of SF RMF + QRPA D. P. Arteaga and P. Ring, Phys. Rev. C77, 034317 (2008) SnSn
34
STEP 2 – Justification of the extrapolated SF D. P. Arteaga and P. Ring, Phys. Rev. C77, 034317 (2008). S. Goriely, Phys. Lett. B436, 10 (1998). Hybrid Deformed RRPA
35
107 Pd[T 1/2 =6.5×10 6 y] long-lived fission product nuclear waste 30-40% uncertainties stem from NLD
36
79 Se(n, ) 80 Se 77 78 79 2.95 10 3 y 80 Se 76 75 120 d 4 F. Kitatani (JAEA) a systematic measurement for stable Se isotopes ---> complete application of SF method To be published A. Makinaga et al, PRC79 (2009) Large uncertainties has remained because of a lack of justification in STEP 2.
37
s-process nucleosynthesis and stellar models Main component Weak component Zr 〜 Bi Fe 〜 Zr Main Weak Zr AGB stars ( 1 ≤ M ≤ 3 ) He-shell burning Massive stars ( 8 ≤ M ) Core He burning Carbon burning 12 C( 12 C,n) 23 Mg kT ≈ 91 keV n n ≈10 11 cm -3 22 Ne( ,n) 25 Mg kT=26 keV, n n ≤10 6 cm -3 13 C( ,n) 16 O kT=8 keV, n n ≈10 7 cm -3 22 Ne( ,n) 25 Mg kT=23 keV, n n ≤10 11 cm -3 (E): E : 0.3 〜 300 keV MACS
39
s-process branching nuclei F. Käppeler et al., Rev. Mod. Phys. 83, 157 (2011) s-only nuclei The s-process branching is a good measure of the stellar neutron density and temperature. 151 Sm(n, ) @ n-TOF (CERN) Sm 2 O 3, 89.9% 151 Sm, 206.4 mg
40
Normal applications of the SF method with real photons requires at least 2 neighboring stable isotopes. s-process branching nuclei F. Käppeler et al., Rev. Mod. Phys. 83, 157 (2011) 9 branching nuclei 63Ni 79Se 81Kr, 85Kr 95Zr 147Nd 151Sm 153Gd 185W (n, ) to be deduced A+1 A+2 ( ,n) known (n, ) A-1 A A ( ,n)
41
s-process branching nuclei F. Käppeler et al., Rev. Mod. Phys. 83, 157 (2011) Some s-process branching nuclei have only one stable isotope. stable 133Cs 159Tb 165Ho 169Tm 181Ta 203Tl branching 134,135Cs 160Tb 163Ho 170,171Tm 179Ta 204Tl 8 branching nuclei
42
Some s-process branching nuclei have 2 stable isotopes that are not neighboring to each other. s-process branching nuclei s-only nuclei 3 branching nuclei stable 151,153Eu branching 152,154,155Eu
43
Coulomb dissociation experiments with SAMURAI at RIKEN-RIBF s-process branching nucleihalflife(yr)Coulomb dissociation (n, ) data 134Cs,135Cs2.0652, 2.3× 10 6 136Cs,135Cs,134Cs133Cs 152Eu*13.537153Eu, 152Eu151Eu 154Eu,155Eu8.593, 4.753156Eu,155Eu,154Eu153Eu 160Tb0.198161Tb,160Tn159Tb 163Ho4570164Ho,166Ho165Ho 170Tm,171Tm0.352, 1.921172Tm,171Tm,170Tm169Tm 179Ta1.82180Ta,182Ta181Ta 204Tl3.78205Tl,204Tl203Tl 11 branching nuclei 18 Coulomb dissociations
44
Ambitious application of the SF method to the r-process The significance is controversial ! BUT this would be the first application to a very neutron-rich nucleus. A pioneering work is in progress. 1) A systematic study of the SF for Sn isotopes 116Sn,…., 124Sn (7 stable) → → → 132Sn 132Sn( ,n) data: GSI Coulomb dissociation data for 132Sn 131 Sn(n, ) 132 Sn cross sections in the r-process nucleosynthesis
47
New -ray Beam Line @ NewSUBARU
48
Summary SF method: (n, ) c.s. for unstable nuclei 1. Nuclear Experiment: ( ,n) c.s. real photons for stable nuclei virtual photons for unstable nuclei (CD) 2. Nuclear Theory: models of SF models of NLD primary strength: low-energy E1 of GDR extra strengths: PDR, M1 3. Coulomb dissociation experiments with SAMURAI @ RIKEN- RIBF play a key role in the application of the SF method.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.