Presentation is loading. Please wait.

Presentation is loading. Please wait.

JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY Key questions How do protons and neutrons make stable nuclei and rare isotopes? How many neutrons.

Similar presentations


Presentation on theme: "JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY Key questions How do protons and neutrons make stable nuclei and rare isotopes? How many neutrons."— Presentation transcript:

1 JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY Key questions How do protons and neutrons make stable nuclei and rare isotopes? How many neutrons can a nucleus hold? What are the heaviest nuclei that can exist?

2 JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY 1934 – Liquide drop model (Bethe, Von Weizsäcker): 1934 – Liquide drop model (Bethe, Von Weizsäcker):  Nuclear fission 1949 – Shell model (Maria Goeppert-Mayer, 1949 – Shell model (Maria Goeppert-Mayer, Hans Jensen)  Magic Numbers 1960 - …Microscopic Models EHFB = Emacro + Eshell + Epairing stable nuclei known nuclei terra incognita N=Z protons neutrons 50 82 50 28 82 20 8 2 2 8 126 The Nuclear Landscape

3 JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY Evidence for shell structure Evidence for shell structure Even-even nuclei: 2 + 1 state energy as an indicator of shell structure

4 JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY Magicity is a fragile concept Near stability N>>Z Nuclear shell structure Is nuclear shell strucuture modified away from the line of stability? As we add neutrons, traditional shell closures are changed, and may even disappear!

5 JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY N=28 is not a good shell closure anymore Experimental proof of disappearing of shell gap for neutron rich nuclei

6 JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY protons neutrons 82 50 28 50 82 20 8 2 2 8 126 stable double-magic nuclei 4 He, 16 O, 40 Ca, 48 Ca, 208 Pb radioactive: 56 Ni, 132 Sn, magic ? 48 Ni, 78 Ni, 100 Sn 70 Ca ? 48 Ca 40 Ca 42 Si 32 Mg ? 40 Shell structure of atomic nuclei

7 JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY Tools we have to investigate shell structure Evidence for nuclear shell structure from : –Nuclear masses. –Spectroscopy of excited states –Reaction cross sections  Corinne’s Talk

8 JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY Masses can be measured in different way: Time of flight Storage ring Penning trap Mass measurement via determination of Cyclotron frequency: f c =qB/2п m From characteristic motion of stored ions Masses measurement

9 JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAYSpectroscopy Particle detector Target Beam γ Reacted beam stable beam and target Fusion evaporation Coulomb excitations One and two nucleon knockout Coulomb break up Charge exchange reactions  Only access to stable or neutron deficient nuclei

10 JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY Spectroscopy Particle detector Target Beam γ Reacted beam radioactive beam: Coulomb excitations One and two nucleon knockout Coulomb break up Charge exchenge reactions  Access to neutron rich nuclei

11 JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY Projectile Fragmentation Isol technique How to produce radioactive beam

12 JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY Key questions How do protons and neutrons make stable nuclei and rare isotopes? What are the heaviest nuclei that can exist?

13 JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY Z = 100 island of stability ? black: stable isotope red:  + -unstable isotope blue:  - -unstable isotope yellow: -instable isotope green: spontan fission Pb (lead) and Bi (bismuth) U (uranium) and Th (thorium) What is the next magic nucleus beyond 208 Pb?

14 JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY 1934 Enrico Fermi proposes to irradiate Uranium with neutrons in order to synthesise Even heavier elements 1938 Otto Hahn and Fritz Straßmann discover the neutron-induced nuclear fission 1939 60-inch-cyclotron group: Cooksey, Corson, Ernest O. Lawrence Thornton, Backus, Salisbury, Luis Alvarez und Edwin McMillan With Fermi’s method and the 60’’-cyclotron 7 Transurane could (Z=93-98) Be synthesised. By irradiation of actinides with light ions the elements up Z=106 could be Produced in Berkeley (CA, U.S.A.) and in Dubna (Rußland). The linear accelerator UNILAC and the velocity filter SHIP at GSI allowed for the synthesis of elements with Z=107-112. Synthesis of SHE via fusion of heavy target nuclei with light projectiles 19521974 Neutron period 19401952 1896 Discovery of radioactivity by A.H. Becquerel Radioactivity period 18961940 Synthesis of SHE via fusion (Pb and Bi as target nuclei) 19741996 1899 Actinium (Z=89) 1908 Radon (Z=86) 1939 Francium (Z=87) 1917 Protactinium (Z=91) 1952 Einsteinium (Z=99) Fermium (Z=100) 1940 Astatin (Z=85) Neptunium (Z=93) 1944 Americium (Z=95) Curium (Z=96) 1941 Plutonium (Z=94) 1950 Californium (Z=98) 1949 Berkelium (Z=97) 1996 Copernicium(Z=112) 1994 Darmstadium(Z=110) Rontgenium(Z=111) 1982 Meitnerium (Z=109) 1981 Bohrium (Z=107) 1984 Hassium (Z=108) 1969 Rutherfordium (Z=104) 1965 Nobelium (Z=102) Lawrencium (Z=103) 1974 Seaborgium (Z=106) 1970 Dubnium (Z=105) 1955 Mendelevium (Z=101) 1898 Polonium (Z=84) Radium (Z=88) History of the synthesis and discovery of super heavy elements Synthesis of SHE via fusion ( 48 Ca beam and actinide targets) 19992005 Element 118 2000 Element 116 1999 Element 114 2003 Element 113 element 115 Dubna

15 JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY How to produce super heavy elements Neutron capture up to Z=100  reactors  bomb  in stars? e-e-e-e-   α α  Désexcitation Chaîne de Désintégration T ~10 -15 s T >10 -6 s Elément superlourd e-e-e-e- n n Fusion Compétition - fission - évaporation Noyau composé T ~10 -20/-17 s Fusion evaporation Cold fusion  X+ 208 Pb, 209 Bi Hot fusion  48 Ca+X See Fabien’s talk

16 JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY Status of SHE research Cold fusion (GSI, RIKEN) based on Pb and Bi targets Cold fusion (GSI, RIKEN) based on Pb and Bi targets 1second 1 minute 1 hour 1 day 10 days GSI RIKEN 1 pb Hot fusion (JINR) based on actinide targets Hot fusion (JINR) based on actinide targets DUBNA 1 pb 35fb 3 events 250days 2pb 6 events (Dubna) 44days Needs for - Higher Z - More events for studies Beam: High intensity beam Spectrometer: High rejection power Wide angular acceptance Good mass resolution Needs for - Higher Z - More events for studies Beam: High intensity beam Spectrometer: High rejection power Wide angular acceptance Good mass resolution Proton

17 JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY Reaction synthesis DAVID’s talk


Download ppt "JRJC 2009 30/11/09 Barbara Sulignano JRJC 2009 CEA SACLAY Key questions How do protons and neutrons make stable nuclei and rare isotopes? How many neutrons."

Similar presentations


Ads by Google