Presentation is loading. Please wait.

Presentation is loading. Please wait.

Bethe ansatz in String Theory Konstantin Zarembo (Uppsala U.) Integrable Models and Applications, Lyon, 13.09.2006.

Similar presentations


Presentation on theme: "Bethe ansatz in String Theory Konstantin Zarembo (Uppsala U.) Integrable Models and Applications, Lyon, 13.09.2006."— Presentation transcript:

1 Bethe ansatz in String Theory Konstantin Zarembo (Uppsala U.) Integrable Models and Applications, Lyon, 13.09.2006

2

3 AdS/CFT correspondence Maldacena’97 Gubser,Klebanov,Polyakov’98 Witten’98

4 Planar diagrams and strings time ‘t Hooft coupling: String coupling constant = (kept finite) (goes to zero)

5 Strong-weak coupling interpolation Circular Wilson loop (exact): Erickson,Semenoff,Zarembo’00 Drukker,Gross’00 0 λ SYM perturbation theory 1 + + … + String perturbation theory Minimal area law in AdS 5

6 Weakly coupled SYM is reliable if Weakly coupled string is reliable if Can expect an overlap.

7

8 N=4 Supersymmetric Yang-Mills Theory Field content: Action: Gliozzi,Scherk,Olive’77 Global symmetry: PSU(2,2|4)

9 Spectrum Basis of primary operators: Dilatation operator (mixing matrix): Spectrum = {Δ n }

10 Local operators and spin chains related by SU(2) R-symmetry subgroup a b a b

11 Tree level: Δ=L (huge degeneracy) One loop: Minahan,Z.’02

12 Zero momentum (trace cyclicity) condition: Anomalous dimensions: Bethe’31 Bethe ansatz

13 Higher loops Requirments of integrability and BMN scaling uniquely define perturbative scheme to construct dilatation operator through order λ L-1 : Beisert,Kristjansen,Staudacher’03

14 The perturbative Hamiltonian turns out to coincide with strong-coupling expansion of Hubbard model at half-filling: Rej,Serban,Staudacher’05

15 Asymptotic Bethe ansatz Beisert,Dippel,Staudacher’04 In Hubbard model, these equations are approximate with O(e -f(λ)L ) corrections at L→∞

16 Anti-ferromagnetic state Weak coupling: Strong coupling: Q: Is it exact at all λ? Rej,Serban,Staudacher’05; Z.’05; Feverati,Fiorovanti,Grinza,Rossi’06; Beccaria,DelDebbio’06

17 Arbitrary operators Bookkeeping: “letters”: “words”: “sentences”: Spin chain: infinite-dimensional representation of PSU(2,2|4)

18 Length fluctuations: operators (states of the spin chain) of different length mix Hamiltonian is a part of non-abelian symmetry group: conformal group SO(4,2)~SU(2,2) is part of PSU(2,2|4) so(4,2): M μν - rotations P μ - translations K μ - special conformal transformations D - dilatation Bootstrap: SU(2|2)xSU(2|2) invariant S-matrix asymptotic Bethe ansatz spectrum of an infinite spin chain Ground state tr ZZZZ… breaks PSU(2,2|4) → P(SU(2|2)xSU(2|2)) Beisert’05

19 Beisert,Staudacher’05

20 STRINGS

21 String theory in AdS 5  S 5 Metsaev,Tseytlin’98 + constant RR 4-form flux Bena,Polchinski,Roiban’03 Finite 2d field theory ( ¯ -function=0) Sigma-model coupling constant: Classically integrable Classical limit is

22 AdS sigma-models as supercoset S 5 = SU(4)/SO(5) AdS 5 = SU(2,2)/SO(4,1) Super(AdS 5 xS 5 ) = PSU(2,2|4)/SO(5)xSO(4,1) AdS superspace: Z 4 grading:

23 Coset representative: g(σ) Currents: j = g -1 dg = j 0 + j 1 + j 2 + j 3 Action: Metsaev,Tseytlin’98 In flat space: Green,Schwarz’84 no kinetic term for fermions!

24 Degrees of freedom Bosons: 15 (dim. of SU(2,2)) + 15 (dim. of SU(4)) - 10 (dim. of SO(4,1)) - 10 (dim. of SO(5)) = 10 (5 in AdS 5 + 5 in S 5 ) - 2 (reparameterizations) = 8 Fermions: - bifundamentals of su(2,2) x su(4) 4 x 4 x 2 = 32 real components : 2 kappa-symmetry : 2 (eqs. of motion are first order) = 8

25 Quantization fix light-cone gauge and quantize: action is VERY complicated perturbation theory for the spectrum, S-matrix,… study classical equations of motion (gauge unfixed), then guess quantize near classical string solutions Berenstein,Maldacena,Nastase’02 Callan,Lee,McLoughlin,Schwarz, Swanson,Wu’03 Frolov,Plefka,Zamaklar’06 Callan,Lee,McLoughlin,Schwarz,Swanson,Wu’03; Klose,McLoughlin,Roiban,Z.’in progress Kazakov,Marshakov,Minahan,Z.’04; Beisert,Kazakov,Sakai,Z.’05; Arutyunov,Frolov,Staudacher’04; Beisert,Staudacher’05 Frolov,Tseytlin’03-04; Schäfer-Nameki,Zamaklar,Z.’05; Beisert,Tseytlin’05; Hernandez,Lopez’06

26 Consistent truncation String on S 3 x R 1 :

27 Zero-curvature representation: Equations of motion: equivalent Zakharov,Mikhaikov’78 Gauge condition :

28 Classical string Bethe equation Kazakov,Marshakov,Minahan,Z.’04 Normalization: Momentum condition: Anomalous dimension:

29 Quantum string Bethe equations extra phase Beisert,Staudacher’05 Arutyunov,Frolov,Staudacher’04

30 Hernandez,Lopez’06 Algebraic structure is fixed by symmetries The Bethe equations are asymptotic: they describe infinitely long strings / spin chains and do not capture finite-size effects. Beisert’05 Schäfer-Nameki,Zamaklar,Z.’06

31 Interpolation from weak to strong coupling in the dressing phase How accurate is the asymptotic BA? (Probably up to e -f(λ)L ) Eventually want to know closed string/periodic chain spectrum need to understand finite-size effects Algebraic structure: Algebraic Bethe ansatz? Yangian symmetries? Baxter equation? Open problems Teschner’s talk


Download ppt "Bethe ansatz in String Theory Konstantin Zarembo (Uppsala U.) Integrable Models and Applications, Lyon, 13.09.2006."

Similar presentations


Ads by Google