Download presentation
Presentation is loading. Please wait.
Published byMyron Lang Modified over 9 years ago
2
Validity and Conditionals There is a relationship between validity of an argument and a corresponding conditional.
3
Validity and Conditionals There is a relationship between validity of an argument and a corresponding conditional. Argument: P, -P>-Q | Q Corresponding Conditional:(P&(-P>-Q))>Q
4
Validity and Conditionals There is a relationship between validity of an argument and a corresponding conditional. Argument: P, -P>-Q | Q Corresponding Conditional:(P&(-P>-Q))>Q An argument is valid iff its corresponding conditional is a logical truth.
5
Example Argument: P, -P>-Q | Q Corresponding Conditional:(P&(-P>-Q))>Q An argument is valid iff its corresponding conditional is a logical truth. P Q TFTFTFTF TTFFTTFF TFTF*TFTF* TFTT*TFTT* TTFF*TTFF* P -P>-Q | QP & (-P > -Q)) > Q
6
Example Argument: P, -P>-Q | Q Corresponding Conditional:(P&(-P>-Q))>Q An argument is valid iff its corresponding conditional is a logical truth. P Q TFTFTFTF TTFFTTFF TFTFTFTF TFTTTFTT TTFFTTFF TFTF*TFTF* TFTT*TFTT* TTFF*TTFF* P -P>-Q | QP & (-P > -Q)) > Q
7
Example Argument: P, -P>-Q | Q Corresponding Conditional:(P&(-P>-Q))>Q An argument is valid iff its corresponding conditional is a logical truth. P Q TFTFTFTF TTFFTTFF TFTFTFTFT TFTTTFTT TTFFTTFF TFTF*TFTF* TFTT*TFTT* TTFF*TTFF* P -P>-Q | QP & (-P > -Q)) > Q
8
Example Argument: P, -P>-Q | Q Corresponding Conditional:(P&(-P>-Q))>Q An argument is valid iff its corresponding conditional is a logical truth. P Q TFTFTFTF TTFFTTFF TFTFTFTFT TFTTTFTTF TTFFTTFF TFTF*TFTF* TFTT*TFTT* TTFF*TTFF* P -P>-Q | QP & (-P > -Q)) > Q
9
Example Argument: P, -P>-Q | Q Corresponding Conditional:(P&(-P>-Q))>Q An argument is valid iff its corresponding conditional is a logical truth. P Q TFTFTFTF TTFFTTFF TFTFTFTFT TFTTTFTTF TTFFTTFF TFTF*TFTF* TFTT*TFTT* TTFF*TTFF* P -P>-Q | QP & (-P > -Q)) > Q For more click here
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.