Download presentation
Presentation is loading. Please wait.
Published byBryce Porter Modified over 9 years ago
1
DSP final project proosal From Bilateral-filter to Trilateral-filter : A better improvement on denoising of images R94922077 張錦文
2
outline Denoising Bilateral filtering Trilateral filtering Reference
3
Denoising Detect noise –Gaussian noise –Impulse noise –Others Remove noise –Gaussian filter –Other techniques
4
Bilateral filtering Two components –Spatial –Radiometric Functionality –Remove gaussian noise & preserve edges Advantages –Not iterative –Easy to implement
5
Bilateral filtering(cont.) For a gray level image, remove gaussian noise & preserve edge.
6
Bilateral filtering(cont.)
7
Trilateral filtering Add the ability to detect & remove impulse noise. Three components –Spatial –Radiometric –Impulse detection factor
8
Trilateral filtering(cont.)
9
Reference [1] C. Tomasi and R. Manduchi, “ Bilateral Filtering for Gray and Color Images, ” in Proc. IEEE Int. Conf. Computer Vision, 1998, pp. 839-846 [2] Roman Garnett, Timothy Huegerich, Charles Chui, Fellow, IEEE, and Wenjie He, Member, IEEE, “ A Universal Noise Removal Algorithm With an Impulse Detector, ” IEEE Trans. Image Process., vol. 14, no. 11, pp. 1747-1754, Nov. 2005 [3] J. Immerkaer, “ Fast Noise Variance Estimation, ” Comput. Vis. Image Understand., vol.64, pp.300-302, Sep. 1996 [4] Charles Kervrann and Jerome Boulanger, “ Optimal Spatial Adaptation for Patch-Based Image Denoising, ” IEEE Trans. Image Process., vol.15, no.10, pp.2866-2878, Oct. 2006
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.