Download presentation
Presentation is loading. Please wait.
Published byJulian Hudson Modified over 9 years ago
1
Image Enhancement ارتقاء تصویر Enhancement Spatial Domain Frequency Domain
2
g( x, y) =T[f( x, y)]
3
Single pixel methods - Gray level transformations Example - Historgram equalization - Contrast stretching - Arithmetic/logic operations Examples - Image subtraction - Image averaging - Multiple pixel methods Examples Spatial filtering - Smoothing filters - Sharpening filters Types of Image Enhancement in the Spatial Domain
4
Gray Levels Transformations تبدیلات سطوح خاکستری where r = input intensity and s = output intensity
5
مکمل کردن تصویر ( تصاویر منفی ) Image Negative L = the number of gray levels Original digital mammogram Negative digital mammogram
6
کشش تمایز Contrast Stretching
7
Notice the slope of T(r) - if Slope > 1 Contrast increases - if Slope < 1 Contrast decrease - if Slope = 1 no change
9
Gray level slicing بخش بندی سطح خاکستری
10
پردازش بافت نگار Histogram Processing Histogram = Graph of population frequencies
11
حالات مختلف در هیستوگرام
12
بهینه سازی ( تعدیل ) هیستوگرام Histogram Equalization
14
Logic Operations عملیات منطقی Original image Image mask Result Region of Interest
15
Image Subtraction تفریق تصویر
17
متوسط گیری تصویر Image Averaging Application : Noise reduction (noise) Image averaging
18
Basics of Spatial Filtering Sometime we need to manipulate values obtained from neighboring pixels Example: How can we compute an average value of pixels in a 3x3 region center at a pixel z?
19
Step 1. Selected only needed pixels Basics of Spatial Filtering
20
Step 2. Multiply every pixel by 1/9 and then sum up the values 4 67 6 9 1 3 3 4 …… … … Mask or Window or Template
21
Examples of Spatial Filtering Masks Sobel operators 01 1 0 0 2 -2 -2 1 0 2 0 0 1 3x3 moving average filter 11 1 1 1 1 1 1 1 3x3 sharpening filter 8
22
Smoothing Linear Filter : Moving Average Application : noise reduction and image smoothing Disadvantage: lose sharp details
23
Laplacian Sharpening : How it works Intensity profile p(x)p(x) 1 st derivative 2 nd derivative Edge
24
Laplacian Sharpening : How it works Before sharpening p(x)p(x) After sharpening
25
First Order Partial Derivative: Sobel operators 01 1 0 0 2 -2 -2 1 0 2 0 0 1 P
26
First Order Partial Derivative: Image Gradient
27
P
28
Laplacian Operator 8 0 0 4 0 0 The center of the mask is positive 11 1 -8 1 1 1 1 1 10 0 -4 1 1 0 1 0 The center of the mask is negative or Application: Enhance edge, line, point Disadvantage: Enhance noise
29
Laplacian Operator
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.