Presentation is loading. Please wait.

Presentation is loading. Please wait.

Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering by A. Gloria, T. Russo, U. D'Amora,

Similar presentations


Presentation on theme: "Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering by A. Gloria, T. Russo, U. D'Amora,"— Presentation transcript:

1 Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering by A. Gloria, T. Russo, U. D'Amora, S. Zeppetelli, T. D'Alessandro, M. Sandri, M. Bañobre-López, Y. Piñeiro-Redondo, M. Uhlarz, A. Tampieri, J. Rivas, T. Herrmannsdörfer, V. A. Dediu, L. Ambrosio, and R. De Santis Interface Volume 10(80):20120833 March 6, 2013 ©2013 by The Royal Society

2 Schematic of moulding and solvent-casting techniques used to obtain polymeric and nanocomposite disc-shaped specimens. A. Gloria et al. J. R. Soc. Interface 2013;10:20120833 ©2013 by The Royal Society

3 XRD spectra relative to PCL, FeHA and the composite containing the biggest amount of magnetic phase (PCL/FeHA 70/30). A. Gloria et al. J. R. Soc. Interface 2013;10:20120833 ©2013 by The Royal Society

4 SEM image of PCL/FeHA (80/20). A. Gloria et al. J. R. Soc. Interface 2013;10:20120833 ©2013 by The Royal Society

5 EDS image of PCL/FeHA (80/20). A. Gloria et al. J. R. Soc. Interface 2013;10:20120833 ©2013 by The Royal Society

6 SEM–EDS P-, Ca- and Fe-mapping photographs of PCL/FeHA (80/20). A. Gloria et al. J. R. Soc. Interface 2013;10:20120833 ©2013 by The Royal Society

7 Load–displacement curves obtained from small punch tests performed on neat PCL and PCL reinforced with FeHA nanoparticles. A. Gloria et al. J. R. Soc. Interface 2013;10:20120833 ©2013 by The Royal Society

8 Results obtained from micro-CT analysis: reconstruction of (a) PCL/FeHA (90/10 w/w) and (b) PCL/FeHA (70/30 w/w) obtained by integrating Skyscan's software package, ImageJ software, Materialise Mimics and Rapidform 2006. A. Gloria et al. J. R. Soc. Interface 2013;10:20120833 ©2013 by The Royal Society

9 Typical image qualitatively representing the water contact angle. A. Gloria et al. J. R. Soc. Interface 2013;10:20120833 ©2013 by The Royal Society

10 Field-dependent magnetization of the three PCL/FeHA compositions investigated in the article. A. Gloria et al. J. R. Soc. Interface 2013;10:20120833 ©2013 by The Royal Society

11 Temperature dependence of the magnetization of the PCL/FeHA (90/10) sample. A. Gloria et al. J. R. Soc. Interface 2013;10:20120833 ©2013 by The Royal Society

12 Frequency dependence of the (a) real (b) and imaginary parts of the magnetic susceptibility of PCL/FeHA (90/10). A. Gloria et al. J. R. Soc. Interface 2013;10:20120833 ©2013 by The Royal Society

13 Hyperthermia curves of the PCL/FeHA magnetic scaffolds under application of a RF magnetic field of f = 260 kHz and H = 27 mT, suitable for in vivo applications. A. Gloria et al. J. R. Soc. Interface 2013;10:20120833 ©2013 by The Royal Society

14 Cell adhesion study: CLSM images at different times after cell seeding. A. Gloria et al. J. R. Soc. Interface 2013;10:20120833 ©2013 by The Royal Society

15 Results obtained from AlamarBlue assay at 7, 14 and 21 days after seeding. A. Gloria et al. J. R. Soc. Interface 2013;10:20120833 ©2013 by The Royal Society

16 Results obtained from ALP/DNA assay at 7, 14 and 21 days after cell seeding. A. Gloria et al. J. R. Soc. Interface 2013;10:20120833 ©2013 by The Royal Society


Download ppt "Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering by A. Gloria, T. Russo, U. D'Amora,"

Similar presentations


Ads by Google