Download presentation
Presentation is loading. Please wait.
Published byShanna Evans Modified over 9 years ago
1
SNU IDB Lab. 1 Ch9. Stacks © copyright 2006 SNU IDB Lab.
2
SNU IDB Lab. Data Structures2 Bird’s-Eye View (1/2) Chapter 9: Stack A kind of Linear list & LIFO(last-in-first-out) structure Insertion and removal from one end Chapter 10: Queue A kind of Linear list & FIFO(first-in-first-out) structure Insertion and deletion occur at different ends of the linear list Chapter 11: Skip Lists & Hashing Chains augmented with additional forward pointers
3
SNU IDB Lab. Data Structures3 Bird’s-Eye View (2/2) Stack Representation Array-based class “ArrayStack” Linked class “LinkedStack” Application using stack Parenthesis Matching Towers of Hanoi Rearranging Railroad Cars Switch Box Routing Offline Equivalence Class Problem Rat in a Maze
4
SNU IDB Lab. Data Structures4 Table of Contents Definition Array Representation of Stack Linked Representation of Stack Stack Applications
5
SNU IDB Lab. Data Structures5 Definition A stack is A kind of Linear list One end is called “top” Other end is called “bottom” Insertions and removals take place at the top A stack is a LIFO list (Last In First Out)
6
SNU IDB Lab. Data Structures6 Stack Application Stack of Cups bottom top C A B D E bottom top C A B D E F Insertion “ F ”
7
SNU IDB Lab. Data Structures7 The ADT Stack AbstactDataType Stack{ instantces linear list of elements; bottom; top; operations empty() : Return true if the stack is empty, Return false otherwise; peek() : Return the top element; push(x) : Add element x at the top; pop() : Remove the top element and return it; } Q: Can we think of any other core operation of the Stack?
8
SNU IDB Lab. Data Structures8 The Interface Stack public interface Stack { public boolean empty(); public Object peek(); public void push(Object theObject); public Object pop(); }
9
SNU IDB Lab. Data Structures9 Table of Contents Definition Array Representation Linked Representation Stack Applications
10
SNU IDB Lab. Data Structures10 The Class DerivedArrayStack (1) Derived from ArrayLinearList class Implements Stack interface The top is right end of array linear list push(theObject) add (size(), theObject) O(1) time pop() remove ( size() - 1) O(1) time
11
SNU IDB Lab. Data Structures11 The Class DerivedArrayStack (2) package dataStructures; import java.util.*; // has stack exception public class DerivedArrayStack extends ArrayLinearList implements Stack { public DerivedArrayStack(int initialCapacity) {super(initialCapacity);} //ArrayLinearList’s constructor public DerivedArrayStack() {this(10);} /* Stack interface methods come here */ }
12
SNU IDB Lab. Data Structures12 public boolean empty () {return isEmpty();} public Object peek () { if (empty()) throw new EmptyStackException(); return get(size() - 1) } public void push (Object theElement) { add(size(), theElement); } public Object pop () { if (empty()) throw new EmptyStackException(); return remove(size() - 1); } The Class DerivedArrayStack (3)
13
SNU IDB Lab. Data Structures13 The Class DerivedArrayStack (4) Stack as a subclass from ArrayLinearList class All public methods of ArrayLinearList may also be performed on a stack For example, get(0)/remove(5)/add(3, x) are still alive Thus, we do not have a true stack implementation So, need to override some undesired methods of ArrayLinearList Public void add(int index, Object obj) { throw new UNsupportedOperationException (“Not supported”) }
14
SNU IDB Lab. Data Structures14 The Class ArrayStack (1) A faster implementation of array-based stack Implement Only the methods of the Stack interface Uses an one-dimensional array push()/pop() : O(1) time
15
SNU IDB Lab. Data Structures15 The Class ArrayStack (2) package dataStructures; import java.util.EmptyStackException; import utilities.*; // ChangeArrayLength public class ArrayStack implements Stack { int top; // current top of stack Object [] stack; // element array public ArrayStack(int initialCapacity){ if (initialCapacity = 1"); stack = new Object [initialCapacity]; // 1D array declaration top = -1; } public ArrayStack() {this(10);} /* Stack interface methods come here */ }
16
SNU IDB Lab. Data Structures16 The Class ArrayStack (3) public bolean empty () { return top== -1; } public Object peek () { if(empty()) throw new EmptyStackException(); return stack[top]; } public void push (Object theElement){ // increase(doubling) array size if necessary if (top == stack.length - 1) stack = ChangeArrayLength.changeLength1D (stack, 2 * stack.length); stack[++top] = theElement; // put theElement at the top of the stack } public Object pop () { if (empty()) throw new EmptyStackException(); Object topElement = stack[top]; stack[top--] = null; // enable garbage collection return topElement; }
17
SNU IDB Lab. Data Structures17 Performance Measurement Time to perform a 500,000 sequence Stack took 2.6 times more of the time taken by ArrayStack The time spent resizing the array is approximately the same for all implementation(0.2 second) InitialCapacity Class10500,000 ArrayStack DerivedArrayStack DerivedArrayStackWithCatch DerivedVectorStack Stack 0.44 0.60 0.55 1.27 1.15 0.22 0.38 0.33 1.04 - (Times are in seconds)
18
SNU IDB Lab. Data Structures18 Table of Contents Definition Array Representation Linked Representation Applications
19
SNU IDB Lab. Data Structures19 Multiple Stacks in an Array Two stacks in an array (space efficient) When more than two Stacks in an array push() : the worst case can be O(length) doubling the existing array may involve a lot of complications pop() : O(1) If we have to save the space, why not pointers! top1top2 Stack1Stack2 [0][n] n = element.length-1
20
SNU IDB Lab. Data Structures20 Chain for the Stack Using a chain for each stack Operations of peek, push, pop method If top is the left-end of linear list get(0), add(0,x), remove(0) : O(1) time If top is the right-end of linear list get(size() –1), add(size(),x), remove(size() –1) : O(size()) time Use the left-end as stack top abcde null firstNode
21
SNU IDB Lab. Data Structures21 The Class DerivedLinkedStack One possible implementation: derived from the class Chain and implements the interface Stack Public class DerivedLinkedStack extends Chain implements Stack { // Replace the name DerivedArrayStack with the name DerivedLinkedStack // Change the parameter of the methods get(), remove(), add() to 0 } As we experienced in DerivedArrayStack, some operations in Chain are redundant and mismatch with the stack So, we better use only the Stack interface
22
SNU IDB Lab. Data Structures22 The Class LinkedStack (1) // want to implement only the stack interface package dataStructures; import java.util.EmptyStackException; public class LinkedStack implements Stack { // data members protected ChainNode topNode; /** create an empty stack */ public LinkedStack (int initialCapacity) { // the default initial value of topNode is null } public LinkedStack () {this(0);} /* methods here */ }
23
SNU IDB Lab. Data Structures23 The Class LinkedStack (2) public boolean empty() { return topNode == null; } public Object peek() { if (empty()) throw new EmptyStackException(); return topNode.element; } public void push(Object theElement) { topNode = new ChainNode(theElement, topNode); } public Object pop() { if (empty()) throw new EmptyStackException(); Object topElement = topNode.element; topNode = topNode.next; return topElement; }
24
SNU IDB Lab. Data Structures24 Performance Measurement LinkedStack is a little bit more efficient than DerivedLinkedStack because redundancies are removed To perform 500,000 sequence DerivedLinkedStack 3.2 sec LinkedStack 2.96 sec In general, LinkedStack requires more memory and time than ArrayStack So, the use of pointers (LinkedStack) provides no benefit when we deal with only a single stack
25
SNU IDB Lab. Data Structures25 Table of Contents Definition Array Representation Linked Representation Stack Applications Parenthesis Matching Towers of Hanoi Rearranging Railroad Cars Offline Equivalence Class Problem Rat in a Maze
26
SNU IDB Lab. Data Structures26 Parenthesis Matching Print out matching of the left and right parentheses in a character string (a*(b+c)+d) : output (0,10), (3,7) match (a+b))( Output (0, 4) match Output 5, 6 have no matching parentheses Solution steps Scan the input expression from left to right ‘ ( ‘ is encountered, add its position to the stack ‘ ) ‘ is encountered, remove matching position from stack Complexity Push / pop operations : O(n) time
27
SNU IDB Lab. Data Structures27 Example: Parenthesis Matching (1) (a*(b+c)+d) position012345678910 character(a*(b+c)+d) 0 ‘ ( ’ meet top
28
SNU IDB Lab. Data Structures28 (a*(b+c)+d) position012345678910 character(a*(b+c)+d) 0 top skip Example: Parenthesis Matching (2)
29
SNU IDB Lab. Data Structures29 (a*(b+c)+d) position012345678910 character(a*(b+c)+d) 0 top skip Example: Parenthesis Matching (3)
30
SNU IDB Lab. Data Structures30 (a*(b+c)+d) position012345678910 character(a*(b+c)+d) 0 top ‘ ( ‘ meet 3 Example: Parenthesis Matching (4)
31
SNU IDB Lab. Data Structures31 (a*(b+c)+d) position012345678910 character(a*(b+c)+d) 0 top skip 3 Example: Parenthesis Matching (5)
32
SNU IDB Lab. Data Structures32 (a*(b+c)+d) position012345678910 character(a*(b+c)+d) 0 top ‘ ) ’ meet 3 Example: Parenthesis Matching (6)
33
SNU IDB Lab. Data Structures33 (a*(b+c)+d) position012345678910 character(a*(b+c)+d) 0 top ‘ ) ’ meet Example: Parenthesis Matching (7) Output : (3, 7)
34
SNU IDB Lab. Data Structures34 (a*(b+c)+d) position012345678910 character(a*(b+c)+d) 0 top skip Example: Parenthesis Matching (8)
35
SNU IDB Lab. Data Structures35 (a*(b+c)+d) position012345678910 character(a*(b+c)+d) 0 top ‘ ) ’ meet Example: Parenthesis Matching (9)
36
SNU IDB Lab. Data Structures36 (a*(b+c)+d) position012345678910 character(a*(b+c)+d) ‘ ) ’ meet Output : (3, 7), (0, 10) Example: Parenthesis Matching (10)
37
SNU IDB Lab. Data Structures37 Parenthesis Matching Code public static void printMatchedPairs (String expr) { /* data members */ // scan expression expr for ( and ) for (int i = 0; i < length; i++) if ( expr.charAt(i) == '(‘ ) s.push(new Integer(i)); else if (expr.charAt(i) == ')') try{ // remove location of matching '(' from stack System.out.println(s.pop() + " " + i); } catch (Exception e) { // stack was empty, no match exists } // remaining '(' in stack are unmatched while (!s.empty()) System.out.println("No match for left parenthesis at " + s.pop()); }
38
SNU IDB Lab. Data Structures38 Table of Contents Stack Applications Parenthesis Matching Towers of Hanoi Rearranging Railroad Cars Switch Box Routing Offline Equivalence Class Problem Rat in a Maze
39
SNU IDB Lab. Data Structures39 Towers of Hanoi Mission: Move the disks from tower1 to tower2 Each tower operates as a stack Cannot place a big disk on top of a smaller one Move n-1 disks to tower3 using tower2 Move the largest to tower2 Move the n-1 disks from tower3 to tower2 using tower1 Use of Recursion Tower 1 Tower 2Tower 3
40
SNU IDB Lab. Data Structures40 TOH Example (1/8) Mission: Move the disks from tower1 to tower2 3 2 1 Tower 1Tower 2 Tower 3
41
SNU IDB Lab. Data Structures41 TOH Example (2/8) Mission: Move the disks from tower1 to tower2 3 2 Tower 1Tower 2 Tower 3 1
42
SNU IDB Lab. Data Structures42 TOH Example (3/8) Mission: Move the disks from tower1 to tower2 3 Tower 1Tower 2 Tower 3 1 2
43
SNU IDB Lab. Data Structures43 TOH Example (4/8) Mission: Move the disks from tower1 to tower2 3 Tower 1Tower 2 Tower 3 1 2
44
SNU IDB Lab. Data Structures44 TOH Example (5/8) Mission: Move the disks from tower1 to tower2 Tower 1Tower 2 Tower 3 1 23
45
SNU IDB Lab. Data Structures45 TOH Example (6/8) Mission: Move the disks from tower1 to tower2 Tower 1Tower 2 Tower 3 123
46
SNU IDB Lab. Data Structures46 TOH Example (7/8) Mission: Move the disks from tower1 to tower2 Tower 1Tower 2 Tower 3 1 2 3
47
SNU IDB Lab. Data Structures47 TOH Example (8/8) Mission: Move the disks from tower1 to tower2 Tower 1Tower 2 Tower 3 1 2 3
48
SNU IDB Lab. Data Structures48 1st code: towersOfHanoi(m,1,2,3) public static void towersOfHanoi (int n, int x, int y, int z) { // Move the top n disks from tower x to tower y. // Use tower z for intermediate storage. if (n > 0) { towersOfHanoi (n-1, x, z, y); System.out.println ("Move top disk from tower " + x + " to top of tower " + y); towersOfHanoi (n-1, z, y, x); }
49
SNU IDB Lab. Data Structures49 Actual execution TOH(3, x, y, z) TOH(2, x, z, y) TOH(1, x, y, z): move 1 from x to y : move 2 from x to z TOH(1, y, z, x): move 1 from y to z move 3 from x to y TOH(2, z, y, x) TOH(1, z, x, y): move 1 from z to x : move 2 from z to y TOH(1, x, y, z): move 1 from x to y
50
SNU IDB Lab. Data Structures50 Complexity: 1 st TOH code The number of moves: moves(n) n = 0 : moves(n) = 0 n > 0 : moves(n) = 2 * moves(n-1) + 1 Therefore moves(n) = 2 n –1 Time Complexity : ⍬ (2 n )
51
SNU IDB Lab. Data Structures51 2nd Code: TOH (1/3) public class TowersOfHanoiShowingStates { // data member // the towers are tower[1:3] private static ArrayStack [] tower; code for towersOfHanoi ( ) comes here; code for showTowerStates ( ) comes here; } The 1 st TOH code gives only the disk-move sequence What if we want to store the actual state of the 3 towers (the disk order bottom to top) use stacks!
52
SNU IDB Lab. Data Structures52 2 nd code: TOH (2/3) /** n disk Towers of Hanoi problem */ public static void towersOfHanoi (int n) { // create three stacks, tower[0] is not used tower = new ArrayStack[4]; for (int i = 1; i <= 3; i++) tower[i] = new ArrayStack(); for (int d = n; d > 0; d--) tower[1].push(new Integer(d)); // add disk d to tower 1 // move n disks from tower 1 to 2 using 3 as intermediate tower showTowerStates(n, 1, 2, 3); }
53
SNU IDB Lab. Data Structures53 2 nd code: TOH (3/3) public static void showTowerStates (int n, int x, int y, int z) { // Move the top n disks from tower x to tower y. if (n > 0) { showTowerStates(n-1, x, z, y); Integer d = (Integer) tower[x].pop(); // move d from top of tower x tower[y].push(d); // to top of tower y System.out.println ("Move disk " + d + " from tower "+ x + " to top of tower " + y); showTowerStates(n-1, z, y, x); }
54
SNU IDB Lab. Data Structures54 Table of Contents Stack Applications Parenthesis Matching Towers of Hanoi Rearranging Railroad Cars Offline Equivalence Class Problem Rat in a Maze
55
SNU IDB Lab. Data Structures55 Rearranging Railroad Cars (1) There are numbered N stations The freight train visits these stations in the order n through 1 Must reorder the cars of the freight train to be in the order 1 through n from front to back Want to drop the x’th car into the station x and keep going input trackoutput track H1H2 H3 [ 581742963 ] (a) Initial H1H2H3 [ 987654321 ] (b) Final How?
56
SNU IDB Lab. Data Structures56 Rearranging Railroad Cars (2) Solution steps If the car is the expected next one in the output track, move it directly to output track If not, move it to a holding track The holding tracks operate in a LIFO manner Assignment rule : The new car u is moved to the holding track H that has at its top a car with smallest label v such that v > u The bottom of each holding track has a big value
57
SNU IDB Lab. Data Structures57 Rearranging Railroad Cars (1/17) Example: Input : 581742963 input trackoutput track H1H2H3 (a) Initial nextCarToOutput 3 1 3 > 1 So, move 3 to holding track H1 Assume: the bottom of holding block has a big number v
58
SNU IDB Lab. Data Structures58 Rearranging Railroad Cars (2/17) Example : Input : 581742963 input track output track H1H2H3 (a) Initial nextCarToOutput 3 1 6 6 > 1 So, move 6 to holding track H2 with the smallest label of its top v > 6
59
SNU IDB Lab. Data Structures59 Rearranging Railroad Cars (3/17) Example: Input : 581742963 input track output track H1H2H3 (a) Initial nextCarToOutput 3 1 9 9 > 1 So, move 9 to holding track H3 with the smallest label of its top v > 9 6
60
SNU IDB Lab. Data Structures60 Rearranging Railroad Cars (4/17) Example: Input : 581742963 input trackoutput track H1H2H3 (a) Initial nextCarToOutput 3 1 2 2 > 1 So, move 2 to holding track H1 because 2 < 3 (hoding track with the smallest label of its top) 69
61
SNU IDB Lab. Data Structures61 Rearranging Railroad Cars (5/17) Example: Input : 581742963 input trackoutput track H1H2H3 (a) Initial nextCarToOutput 3 1 4 4 > 1 So, move 4 to holding track H2 because 4 < 6 (hoding track with the smallest label of its top) 69 2
62
SNU IDB Lab. Data Structures62 Rearranging Railroad Cars (6/17) Example: Input : 581742963 input trackoutput track H1H2H3 (a) Initial nextCarToOutput 3 1 7 7 > 1 So, move 7 to holding track H3 because 7 < 9 (holding track with the smallest label of its top) 69 24
63
SNU IDB Lab. Data Structures63 Rearranging Railroad Cars (7/17) Example: Input : 581742963 input track output track H1H2H3 (a) Initial nextCarToOutput 3 1 1 1= 1 So, move 1 to output track 6 9 24 7
64
SNU IDB Lab. Data Structures64 Rearranging Railroad Cars (8/17) Example: Input : 581742963 input trackoutput track H1H2H3 (a) Initial nextCarToOutput 3 2 6 9 4 7 1 2 2 = 2 So, move 2 to output track
65
SNU IDB Lab. Data Structures65 Rearranging Railroad Cars (9/17) Example : Input : 581742963 input track output track H1H2H3 (a) Initial nextCarToOutput 3 3 6 9 4 7 1 2 3 = 3 So, move 3 to output track
66
SNU IDB Lab. Data Structures66 Rearranging Railroad Cars (10/17) Example : Input : 581742963 input track output track H1H2H3 (a) Initial nextCarToOutput 3 4 6 9 47 1 2 4 = 4 So, move 4 to output track
67
SNU IDB Lab. Data Structures67 Rearranging Railroad Cars (11/17) Example: Input : 581742963 input track output track H1H2H3 (a) Initial nextCarToOutput 5 69 7 8 8 > 5 So, move 8 to holding track H1 (hoding track with the smallest label of its top) 3 1 2 4
68
SNU IDB Lab. Data Structures68 Rearranging Railroad Cars (12/17) Example: Input : 581742963 input track output track H1H2H3 (a) Initial nextCarToOutput 5 6 9 7 5 5 = 5 So, move 5 to output track directly 8 3 1 2 4
69
SNU IDB Lab. Data Structures69 Rearranging Railroad Cars (13/17) Example: Input : 581742963 input track output track H1H2H3 (a) Initial nextCarToOutput 6 69 7 8 3 1 2 4 5 6 = 6 So, move 6 to output track
70
SNU IDB Lab. Data Structures70 Rearranging Railroad Cars (14/17) Example : Input : 581742963 input track output track H1H2H3 (a) Initial nextCarToOutput 7 9 7 8 7 = 7 So, move 7 to output track 3 1 2 4 5 6
71
SNU IDB Lab. Data Structures71 Rearranging Railroad Cars (15/17) Example: Input : 581742963 input track output track H1H2H3 (a) Initial nextCarToOutput 8 9 8 8 = 8 So, move 8 to output track 3 1 2 4 5 6 7
72
SNU IDB Lab. Data Structures72 Rearranging Railroad Cars (16/17) Example: Input : 581742963 input track output track H1H2H3 (a) Initial nextCarToOutput 9 9 9 = 9 So, move 9 to output track 3 1 2 4 5 6 7 8
73
SNU IDB Lab. Data Structures73 Rearranging Railroad Cars (17/17) Example: Input : 581742963 input track output track H1H2H3 (a) Initial nextCarToOutput 9 3 1 2 4 5 6 7 8 9
74
SNU IDB Lab. Data Structures74 RailRoadwithStacks (1) Use array-based stacks public class RailRoadWithStacks { // data members: ArrayStack[], inputOrder[], numOfCars, numOfTracks, smallestCar, itsTrack //methods /* * rearrange railroad cars beginning with the initial order inputOrder[] railroad (int [] inputOrder, int NoOfCars, int NoOfTracks) /* * output the smallest car from the holding tracks outputFromHoldingTrack () /* * put car c into a holding track putInHoldingTrack (int c) }
75
SNU IDB Lab. Data Structures75 RailRoadwithStack (2) public static boolean railroad (int [] inputOrder, int NoOfCars, int NoOfTracks){ numOfCars = NoOfCars; numOfTracks = NoOfTracks; track = new ArrayStack [numOfTracks + 1]; // create stacks as holding tracks for (int i = 1; i <= numOfTracks; i++) track[i] = new ArrayStack(); int nextCarToOutput = 1; smallestCar = numOfCars + 1; // no car in holding tracks for (int i = 1; i <= numOfCars; i++) { // rearrange cars if (inputOrder[i] == nextCarToOutput) { // send car to output track nextCarToOutput++; while (smallestCar == nextCarToOutput){ //output from holding tracks outputFromHoldingTrack(); nextCarToOutput++;} } else if ( !putInHoldingTrack(inputOrder[i]) ) return false; } return true; }
76
SNU IDB Lab. Data Structures76 Move a car from a holding track to the output track private static void outputFromHoldingTrack() { track[itsTrack].pop(); // remove smallestCar from itsTrack // find new smallestCar and itsTrack by checking top of all stacks smallestCar = numOfCars + 2; for (int i = 1; i <= numOfTracks; i++) if (!track[i].empty() && ((Integer) track[i].peek()).intValue() < smallestCar) { smallestCar = ((Integer) track[i].peek()).intValue(); itsTrack = i; } RailRoadwithStack (3)
77
SNU IDB Lab. Data Structures77 Put car c into a holding track using the assignment rule private static boolean putInHoldingTrack(int c) { // find best holding track for car c int bestTrack = 0 int bestTop = numOfCars + 1; for (int i = 1; i <= numOfTracks; i++) { // scan tracks if (!track[i].empty()) { // track i not empty int topCar = ((Integer) track[i].peek()).intValue(); if (c < topCar && topCar < bestTop){ // track i has smaller car at top bestTop = topCar; bestTrack = i;} } else if (bestTrack == 0) bestTrack = i; // track i empty } if (bestTrack == 0) return false; // no feasible track track[bestTrack].push(new Integer(c)); // add c to bestTrack if (c < smallestCar) { // update smallestCar and itsTrack if needed smallestCar = c; itsTrack = bestTrack; } return true; } RailRoadwithStack (4)
78
SNU IDB Lab. Data Structures78 Complexity: RailRoadWithStack Complexity of RailRoad() outputFromHoldingTrack() O( numOfCars * numOfTracks ) putInHoldingTrack() O( numOfCars * numOfTracks ) The rest of the code ⍬ ( numOfCars ) The overall complexity O( numOfCars * numOfTracks ) If a balanced binary search tree is used for storing the labels of the cars at the top of the holding tracks, finding the holding track can be performed efficiently The complexity can be reduced to O( numOfCars * log(numOfTracks) )
79
SNU IDB Lab. Data Structures79 Table of Contents Stack Applications Parenthesis Matching Towers of Hanoi Rearranging Railroad Cars Offline Equivalence Class Problem Rat in a Maze
80
SNU IDB Lab. Data Structures80 Offline Equivalence Class Problem (1) Problem Input : the number of element: n the number of relation pairs: r the r relation pairs Output : partition the n elements into equivalence classes Example N=9, r=11 R = 11 relation pairs { (1,5), (1,6), (3,7), (4,8), (5,2), (6,5), (4,9), (9,7), (7,8), (3,4), (6,2) }
81
SNU IDB Lab. Data Structures81 Offline Equivalence Class Problem (2) Solution Strategy The 1st phase : Input the data and set up n lists to represent the relation pairs Each relation pair(i,j), i is put on list[j] and j is put on list[i] : { (1,5), (1,6), (3,7), (4,8), (5,2),(6,5), (4,9), (9,7), (7,8), (3,4), (6,2) } list[1] = [5, 6], list[2] = [5, 6], list[3] = [7, 4], list[4] = [8, 9, 3], list[5] = [1, 2, 6], list[6] = [1, 2, 5], list[7] = [3, 9, 8], list[8] = [4, 7], list[9] = [4, 7]
82
SNU IDB Lab. Data Structures82 Offline Equivalence Class Problem (3) The 2nd phase : The equv classes(EC) are identified by locating a seed 1. Find a seed that is output as the first member of the next EC 2. The seed is put onto a list, unprocessedList (Stack), of elements that are in the same EC 3. Remove an element i from unprocessedList 4. Output and add to unprocessedList elements on list[i] that haven’t already been identified as class members 5. Until the unprocessedList becomes empty, Continues the process 3&4. - If it is empty, we have completed a class 6. Proceed to find a seed for the next class
83
SNU IDB Lab. Data Structures83 Equivalence Class with Stack (1) list[1]=[5,6] list[2]=[5,6] list[3]=[7,4] list[4]=[8,9,3] list[5]=[1,2,6] list[6]=[1,2,5] list[7]=[3,9,8] list[8]=[4,7] list[9]=[4,7] seed New class 1 unprocessedList (stack) 1 1 outputadd
84
SNU IDB Lab. Data Structures84 list[1]=[5,6] list[2]=[5,6] list[3]=[7,4] list[4]=[8,9,3] list[5]=[1,2,6] list[6]=[1,2,5] list[7]=[3,9,8] list[8]=[4,7] list[9]=[4,7] seed New class unprocessedList (stack) 1 1 list[1] = 56 Equivalence Class with Stack (2)
85
SNU IDB Lab. Data Structures85 list[1]=[5,6] list[2]=[5,6] list[3]=[7,4] list[4]=[8,9,3] list[5]=[1,2,6] list[6]=[1,2,5] list[7]=[3,9,8] list[8]=[4,7] list[9]=[4,7] seed New class unprocessedList (stack) 1 1 output list[1] = 56 56 If they already have been output, ignore them Equivalence Class with Stack (3)
86
SNU IDB Lab. Data Structures86 list[1]=[5,6] list[2]=[5,6] list[3]=[7,4] list[4]=[8,9,3] list[5]=[1,2,6] list[6]=[1,2,5] list[7]=[3,9,8] list[8]=[4,7] list[9]=[4,7] seed New class unprocessedList (stack) 1 outputadd 56 5 65 6 Equivalence Class with Stack (4)
87
SNU IDB Lab. Data Structures87 list[1]=[5,6] list[2]=[5,6] list[3]=[7,4] list[4]=[8,9,3] list[5]=[1,2,6] list[6]=[1,2,5] list[7]=[3,9,8] list[8]=[4,7] list[9]=[4,7] seed New class unprocessedList (stack) 15 6 6 5 list[5] = 12 6 Equivalence Class with Stack (5)
88
SNU IDB Lab. Data Structures88 list[1]=[5,6] list[2]=[5,6] list[3]=[7,4] list[4]=[8,9,3] list[5]=[1,2,6] list[6]=[1,2,5] list[7]=[3,9,8] list[8]=[4,7] list[9]=[4,7] seed New class unprocessedList (stack) 1 output 5 6 6 5 list[5] = 12 6 12 6 1,6 already have been output, so ignore 1,6 and output 2 Equivalence Class with Stack (6)
89
SNU IDB Lab. Data Structures89 list[1]=[5,6] list[2]=[5,6] list[3]=[7,4] list[4]=[8,9,3] list[5]=[1,2,6] list[6]=[1,2,5] list[7]=[3,9,8] list[8]=[4,7] list[9]=[4,7] seed New class unprocessedList (stack) 1 output 5 6 6 1 2 6 add 2 2 Equivalence Class with Stack (7)
90
SNU IDB Lab. Data Structures90 list[1]=[5,6] list[2]=[5,6] list[3]=[7,4] list[4]=[8,9,3] list[5]=[1,2,6] list[6]=[1,2,5] list[7]=[3,9,8] list[8]=[4,7] list[9]=[4,7] seed New class unprocessedList (stack) 1 output 5 6 6 add 2 2 list[2] = 5656 If 5,6 already have been output, ignore them Equivalence Class with Stack (8)
91
SNU IDB Lab. Data Structures91 list[1]=[5,6] list[2]=[5,6] list[3]=[7,4] list[4]=[8,9,3] list[5]=[1,2,6] list[6]=[1,2,5] list[7]=[3,9,8] list[8]=[4,7] list[9]=[4,7] seed New class unprocessedList (stack) 1 output 5 6 6 add 2 list[6] = 12 5 12 5 1,2,5 already have been output, ignore them Equivalence Class with Stack (9)
92
SNU IDB Lab. Data Structures92 list[1]=[5,6] list[2]=[5,6] list[3]=[7,4] list[4]=[8,9,3] list[5]=[1,2,6] list[6]=[1,2,5] list[7]=[3,9,8] list[8]=[4,7] list[9]=[4,7] seed New class unprocessedList (stack) 1 output 5 6 add 2 This is empty, so we find one equivalence class{1,2,5,6} By this way, we can find another class{3,4,7,8,9} Equivalence Class with Stack (10)
93
SNU IDB Lab. Data Structures93 Operations Insert and examine all elements Select a representation for list and unprocessedList Space requirement Between 2r (stack) and 4r (linked list) references Time performance The linked implementations are slower than array-based counterparts. So, unprocessedList and list is implemented as an ArrayStack Equivalence Class with Stack: Code (1)
94
SNU IDB Lab. Data Structures94 public static void main (String [] args) { // input the number of elements, n // input the number of relations, r // create an array of empty stacks, list[0] not used ArrayStack [] list = new ArrayStack [n + 1]; for (int i = 1; i <= n; i++) list[i] = new ArrayStack(); for (int i = 1; i <= r; i++) { // input the r relations and put on stacks int a = keyboard.readInteger(); int b = keyboard.readInteger(); list[a].push(new Integer(b)); list[b].push(new Integer(a)); } // initialize to output equivalence classes ArrayStack unprocessedList = new ArrayStack(); boolean [] out = new boolean [n + 1]; Equivalence Class with Stack: Code (1)
95
SNU IDB Lab. Data Structures95 for (int i = 1; i <= n; i++) // output equivalence classes if (!out[i]) { // start of a new class out[i] = true; unprocessedList.push(new Integer(i)) ; while (!unprocessedList.empty()) { // get rest of class from unprocessedList int j = ((Integer) unprocessedList.pop()).intValue(); while (!list[j].empty()) { // elements on list[j] are in the same class int q = ((Integer) list[j].pop()).intValue(); if (!out[q]) { // q not yet output System.out.print(q + " "); out[q] = true; unprocessedList.push(new Integer(q)); } //end of if } //end of while } //end of if } // end of main Equivalence Class with Stack: Code (2)
96
SNU IDB Lab. Data Structures96 Complexity: Equv Class with Stack Input and initialize the array list[] O(n+r) Pop and examine all elements ⍬ (r) So, overall complexity O(n+r) If no exception, ⍬ (n+r)
97
SNU IDB Lab. Data Structures97 Table of Contents Stack Applications Parenthesis Matching Towers of Hanoi Rearranging Railroad Cars Offline Equivalence Class Problem Rat in a Maze
98
SNU IDB Lab. Data Structures98 Rat in a Maze: Problem What is maze? A rectangular area with an entrance and an exit The interior of maze contains obstacles Suppose that maze is to be modeled as an n x m matrix Position (1, 1) : entrance Position (n, m) : exit Each maze position : row and column intersection Position (i, j) = 1 iff there is an obstacle Position (i, j) = 0 otherwise Problem Find a path from the entrance to the exit of a maze A path is a sequence of position
99
SNU IDB Lab. Data Structures99 Rat in a Maze: Representation Example (a) A maze (b) Matrix representation of maze
100
SNU IDB Lab. Data Structures100 Find a path: Idea { Begin with the entrance If (the present position is the exit) { pop the all entries in the path stack; return } Else { We block the current position; If (the current position is surrounded by the obstacles) { pop the stack; back-up } While ( there is unblocked adjacent maze position ) { Move to this new adjacent position; Push the current position into the path stack; Attempt to find a path } If ( tried all adjacent unblocked positions and no path is found ) { There is no path in maze; return } }
101
SNU IDB Lab. Data Structures101 Rat in a Maze: Strategy (1) Maze Storing 1 or 0 2D array of type byte or 2D array of type Boolean Each maze position : Position(i,j) maze[i][j] Use objects of type Position, which is defined a class with private members row and col Path : Use array-based stack that maintains the path from entrance to the current position
102
SNU IDB Lab. Data Structures102 Rat in a Maze: Strategy (2) Four moves are possible: right, down, left, up To avoid to handle positions on the boundaries of maze differently from interior positions Surround the maze with a wall of obstacles. For an m x m maze, 0 th row & m+1 th row and 0 th cloumn & m+1 th column are added see figure 9.15 (page 343) Theoretically a long path passes m x m positions (worst case) while a short path passes 2m positions (best case) in a maze with no blockages
103
SNU IDB Lab. Data Structures103 Rat in a Maze: Strategy (3) Have to select the order of moves from “here” For example, move right, then down, then left, and up The coordinates to move to are computed by maintaining a table of offsets. To avoid moving to positions that we have been through before we place an obstacle on a visited position, i.e, set maze[i][j] =1 If we have to back up, the next move option is computed by the followings: if (next.row == here.row) option = 2 + next.col – here.col; else option = 3 + next.row – here.row;
104
SNU IDB Lab. Data Structures104 Rat In a Maze: Example (1) Maze M[3,3] 0 0 1 0 1 0 0 0 0 Start: M[1,1] =1, here = M[1,1] Move to M[1,2] : pushStack M[1,1], here=M[1,2], blocking M[1,2] M[1,2] is surrounded by “ 1 ” Back-up: popStack, next = M[1,1] option = 2 + next.col – here.col = 1, here = next = M[1,1] Move to M[2,1] : pushStack M[1,1], here=M[2,1], blocking M[2,1]
105
SNU IDB Lab. Data Structures105 Rat In a Maze: Example (2) Maze M[3,3] 1 1 1 1 1 0 0 0 0 Move to M[3,1] : pushStack M[2,1], here=M[3,1], blocking M[3,1] Move to M[3,2] : pushStack M[3,1], here=M[3,2], blocking M[3,2] Move to M[3,3] : pushStack M[3,2], here=M[3,3], blocking M[3,3] You arrived at the entrance: pushStack M[3,3] Pop all the entries from the stack & print in a reverse order: M[1,1], M[2,1], M[3,1], M[3,2], M[3,3] return true;
106
SNU IDB Lab. Data Structures106 Rat in a Maze: Main() //private static method welcome //private static method inputMaze //private static method findPath //private static method outputPath public static void main(String[] args){ welcome(); inputMaze(); if (findPath()) outputPath(); else System.out.println(“No path”); }
107
SNU IDB Lab. Data Structures107 FindPath() code using stack (1) private static boolean findPath(){ path = new ArrayStack(); // initialize offsets Position [] offset = new Position [4]; offset[0] = new Position(0, 1); // right offset[1] = new Position(1, 0); // down offset[2] = new Position(0, -1); // left offset[3] = new Position(-1, 0); // up // initialize wall of obstacles around maze for (int i = 0; i <= size + 1; i++) { maze[0][i] = maze[size + 1][i] = 1; // bottom and top maze[i][0] = maze[i][size + 1] = 1; // left and right } Position here = new Position(1, 1); maze[1][1] = 1; // prevent return to entrance int option = 0; // next move int lastOption = 3;
108
SNU IDB Lab. Data Structures108 FindPath() code using stack (2) // search for a path while (here.row != size || here.col != size) { // not at exit // find a neighbor to move to int r = 0, c = 0; // row and column of neighbor while (option <= lastOption) { r = here.row + offset[option].row; c = here.col + offset[option].col; if (maze[r][c] == 0) break; // find a neightbor to proceed! option++; // next option } // was a neighbor found? if (option <= lastOption) { // move to maze[r][c] path.push(here); here = new Position(r, c); maze[r][c] = 1; // set to 1 to prevent revisit option = 0; } else { // no neighbor to move to, back up if (path.empty()) return false; // no place to back up to Position next = (Position) path.pop(); if (next.row == here.row) option = 2 + next.col - here.col; else option = 3 + next.row - here.row; here = next; } //end of else } return true; // at exit }
109
SNU IDB Lab. Data Structures109 Complexity: Rat in a Maze Complexity For the time complexity, we move to each unblocked position of the input maze in worst case O(unblocked), where unblocked is the number of unblocked positions in the input maze Once we visited a position, we block it no revisit That is, in m *m maze, the worst case of time complexity is O(size 2 ) = O(m 2 )
110
SNU IDB Lab. Data Structures110 Summary Stack is A kind of Linear list Insertion and removal from one end “top” LIFO(last-in-first-out) structure Representation ArrayStack class LinkedStack class Stack Applications Parenthesis Matching Towers of Hanoi Rearranging Railroad Cars Offline Equivalence Class Problem Rat in a Maze
111
SNU IDB Lab. Data Structures111 JDK class: java.util.Stack public class Stack extends Vector { constructors Stack(): Constructs an empty stack methods boolean empty(): Returns true iff the stack is empty, false otherwise Object pop(): Removes and returns the object at the top of the stack Object push(Object obj): Pushes obj onto the top of the stack int search(Object obj): Returns the position of obj in the stack }
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.