Download presentation
Presentation is loading. Please wait.
1
Progress Report during secondment in Prague
Xueji Zhang / March 11, 2015 Progress Report during secondment in Prague
2
Outline Research Modeling of a clamped-clamped beam
Finite Element Method Analytical solution: standing wave equation LQR control of FE model of the beam Collocated control with root-locus method Robust control of FE model of the beam (FSC course) πΎπππββπππβπΏππ£π plate equation derivation with Hamiltonβs principle Ph.D. Training Cooperative Control of multi-agent systems (Flexible Structure Control: included in the research section) (Linear Matrix Inequality in Control: to share after finalizing)
3
A.1. Euler-Bernoulli beam: Finite Element Method
4
Bernoulli beam element
5
Strain Energy Strain energy: Then,
6
Kinetic Energy Kinetic Energy: Then,
7
Assembly and modes extraction
Characteristic Equation:
8
C-C beam mode shapes (Solved with MATLAB)
# of elements = 40; First 4 modes: Natural frequency: Mode Shapes:
9
A.2. Euler-Bernoulli beam: Partial Differential Equation (PDE) model with standing wave solution
10
Analytical solution Governing equation of motion for Bernoulli beam: Standing wave equation: Clamped-Clamped Boundary Condition:
11
Mathematical solution
With boundary condition,
12
Shape of π π π π π₯ = cos π π π₯ β cosh π π π₯ β cos π π β cosh π π sin π π β sinh π π [ sin π π π₯ β sinh π π π₯ ]
13
B. LQR control of the beam(SPIE2015 paper)
π 2 π€ π π‘ 2 π₯,π‘ =β π 4 π€ π π‘ 4 π₯,π‘ +π’ π₯,π‘ , π€ π₯,0 = π€ 0 π₯ , ππ€ ππ‘ π₯,0 = π€ 0 (π₯), 0<π₯<1, π‘β₯0. B.C. : ππ€ ππ₯ 0,π‘ = ππ€ ππ₯ 1,π‘ =0=π€ 0,π‘ =π€(1,π‘)
14
LQR formulation min π’(β,π‘) π½ π§ 0 ;π’(β,π‘ )= 0 β (<π¦,π¦>+ <π’,βπ’>)ππ‘ π π’πππππ‘ π‘π π§ β,π‘ =ππ§ β,π‘ +β¬π’(β,π‘) π¦ β,π‘ =ππ§ β,π‘ π§ β,0 = π§ 0 π§ β,π‘ = π€ β,π‘ π€ β,π‘ , π= π πΌ β π 4 π π₯ 4 0 , β¬= π πΌ , π=I
15
Results: Convolution Kernel π(π,π) : π’ π₯,π‘ =β 0 1 π(π,π) π€ π,π‘ ππ Decentralization properties are shown in next slides
16
Numerical evaluation: π π,π , π= π π , π΅=π, ππ, ππ, ππ π π,π β π=π π΅ πΆ π π π (π) π π (π)
π’ π₯,π‘ =β 0 1 π(π,π) π€ π,π‘ ππ
17
Numerical evaluation: π π,π , π= π π , π΅=π, ππ, ππ, ππ π π,π β π=π π΅ πΆ π π π (π) π π (π)
π’ π₯,π‘ =β 0 1 π(π,π) π€ π,π‘ ππ
18
Numerical evaluation: π π,π , π= π π , π΅=π, ππ, ππ, ππ π π,π β π=π π΅ πΆ π π π (π) π π (π)
π’ π₯,π‘ =β 0 1 π(π,π) π€ π,π‘ ππ
19
LQR formulation for FE model
min π’(π‘) 0 β [ π¦ π‘ π π¦ π‘ + π’ π‘ π π
π’(π‘)]ππ‘ π π’πππππ‘ π‘π π₯ π‘ =π΄π₯ π‘ +π΅π’(π‘) π¦ π‘ =πΆπ₯ π‘ π₯ 0 = π₯ 0 . Herein π₯(π‘)= π π (π‘) π π (π‘) βΉ Static feedback: π’=β π
β1 π΅ π ππ₯=βπΉπ₯
20
Extracted from πΉ (π’=β π
β1 π΅ π ππ₯=βπΉπ₯)
π 1π§ : π€βΌπππππ
21
Extracted from πΉ (π’=β π
β1 π΅ π ππ₯=βπΉπ₯)
π 2π : π βΌπ‘ππππ’π
22
Simulations (Simulation time = 1 s)
Distributed Sensors Decentralized control
23
C. MIMO control of beam with root-locus (IEEE CDC2015 in processing)
Improve FE model (compared with model in SPIE paper) Element Nr=1000; Model Order Reduction: modal truncation up to first 20 modes Open-loop video: Open-loop.avi Vel Feedback in the middle position: OneVelFb.avi Angular Vel in the middle position: OneAngularVelFb.avi
24
C. MIMO control of beam with root-locus (IEEE CDC2015 in processing)
Improve FE model (compared with model in SPIE paper) Element Nr=1000; Model Order Reduction: modal truncation up to first 20 modes Open-loop video: OpenLoop.avi Vel Feedback in the middle position: OneVelFb.avi Angular Vel in the middle position: OneAngularVelFb.avi Technical findings: One sensor can βeliminateβ at most 1 vibration mode; Placement of one single sensor depends on which modes need to damp Distributed Vel FB damp lower modes first: VelFb_every_node_rootlocus.avi Distributed Angular Vel damp higher modes first: AngularVelFb_every_node_rootlocus.avi Research ongoing: density and scalability
25
D. Robust Control of a clamped-clamped beam (FSC)
Parameter uncertainty in FE model Additive uncertainty model: πΊ= πΊ 0 +β π π , πΊ 0 nominal plant
26
Filter design
27
Performance: validation of the 15th-order controller
28
E. πΎπππββπππβπΏππ£π plate governing equation derivation: Hamiltonβs principle
Dynamics_Hamiton_Splitted.pdf
29
F. Ph.D. course: Cooperative control of multi-agent systems
5-agent integrator model: π₯ π = π’ π Graph topology (info flow): πΈ= Consensus protocol: π’ π = π π ππ ( π₯ π β π₯ π ) Laplacian matrix: πΏ= β1 β1 0 β β β1 β Global dynamics: π =βπΏπ, π=[ π₯ 1 π₯ 2 π₯ 3 π₯ 4 π₯ 5 ] π
30
Simulink model
31
Simulation results: (average) consensus
32
Small toy-project: mass-spring-damper system synchronization
33
More advanced project (only if time permitting)
Parallel parking for 5 mobile cars: nonlinear dynamics involved I/O feedback linearization Leader-following stabilization problem
34
G. Other literature study
Bassam Bamieh's framework: Distributed Control of Spatially Invariant Systems. IEEE Transactions on Automatic Control, Vol. 47, pp , 2002. Raffaello D'Andrea's framework: Distributed Control Design for Spatially Interconnected Systems. IEEE Transactions on Automatic Control, Vol. 48, pp , 2003. Simple control law A. Positive position feedback (PPF) B. Direct velocity feedback C. Acceleration feedback D. Integral force feedback E. Piezoelectric Shunt damping
35
H. Directions?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.