Download presentation
Presentation is loading. Please wait.
Published byJohnathan Wright Modified over 9 years ago
1
Penn ESE370 Fall2013 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 18: October 14, 2013 Energy and Power Basics
2
Previously Where capacitance arises What drives delay –How to optimize Penn ESE370 Fall2013 -- DeHon 2
3
Today Power Sources Static Capacitive Switching Short Circuit (Day 19) Penn ESE370 Fall2013 -- DeHon 3
4
Power P=I×V Penn ESE370 Fall2013 -- DeHon 4
5
Understanding Currents Penn ESE370 Fall2013 -- DeHon 5
6
Operating Modes Steady-State: What modes are the transistors in? –Vin=Vdd –Vin=Gnd What current flows in steady state? Penn ESE370 Fall2013 -- DeHon 6
7
Operating Modes Steady-State: Vin=Vdd –PMOS subthreshold –NMOS resistive Penn ESE370 Fall2013 -- DeHon 7
8
Static Power Where does I static come from? –Subthreshold leakage –Gate-Drain leakage Penn ESE370 Fall2013 -- DeHon 8 Vin~=V dd
9
Data Dependent? How does value of input impact I static ? Penn ESE370 Fall2013 -- DeHon 9
10
Data Dependent? How does value of input impact I static ? Penn ESE370 Fall2013 -- DeHon 10
11
Static Power P=I×V What V should we use? Penn ESE370 Fall2013 -- DeHon 11
12
Power: During Switching P=IV Input switch 1 0 What’s V? What’s I? Where does I go? Penn ESE370 Fall2013 -- DeHon 12
13
Power: During Switching P=IV Input switch 1 0 Where does I go? –Vin=Gnd Penn ESE370 Fall2013 -- DeHon 13
14
Power: During Switching P=IV Input switch 1 0 Where does I go? –Vin=Gnd Penn ESE370 Fall2013 -- DeHon 14
15
Power: During Switching P=IV Input switch 1 0 Where does I go? –Vin=Vdd/2 And Vdd>Vthn+|Vthp| Penn ESE370 Fall2013 -- DeHon 15
16
Power: During Switching P=IV Input switch 1 0 Where does I go? –Vin=Vdd/2 And Vdd>Vthn+|Vthp| Penn ESE370 Fall2013 -- DeHon 16
17
Switching Currents Charge (discharge) output If both transistor on: –Current path from V dd to Gnd Penn ESE370 Fall2013 -- DeHon 17
18
Power: During Switching P=IV Input switch 0 1 What’s V? What’s I? Where does current flow? Penn ESE370 Fall2013 -- DeHon 18
19
Power: During Switching P=IV Input switch 0 1 Where does I go? –Vin=Vdd Penn ESE370 Fall2013 -- DeHon 19
20
Power: During Switching P=IV Input switch 0 1 Where does I go? –Vin=Vdd Penn ESE370 Fall2013 -- DeHon 20
21
Power: During Switching P=IV Input switch 0 1 Where does I go? –Vin=Vdd/2 And Vdd>Vthn+|Vthp| Penn ESE370 Fall2013 -- DeHon 21
22
Power: During Switching P=IV Input switch 0 1 Where does I go? –Vin=Vdd/2 And Vdd>Vthn+|Vthp| Penn ESE370 Fall2013 -- DeHon 22
23
Observe I changes over time Data dependent At least two components –I static – no switch –I switch – when switch Penn ESE370 Fall2013 -- DeHon 23
24
Switching Penn ESE370 Fall2013 -- DeHon 24
25
Switching Currents I switch (t) = I sc (t) + I dyn (t) I(t) = I static (t)+I switch (t) Penn ESE370 Fall2013 -- DeHon 25 I sc I static I dyn
26
Charging I dyn (t) – why changing? –I ds = f(V ds,V gs ) –and V gs, V ds changing Penn ESE370 Fall2013 -- DeHon 26
27
Look at Energy [focus on I dyn (t)] Penn ESE370 Fall2013 -- DeHon 27
28
Energy to Switch Penn ESE370 Fall2013 -- DeHon 28
29
Integrating Do we know what this is? Penn ESE370 Fall2013 -- DeHon 29
30
Capacitor Charge Do we know what this is? What is Q? Penn ESE370 Fall2013 -- DeHon 30
31
Capacitor Charge Penn ESE370 Fall2013 -- DeHon 31
32
Capacitor Charging Energy Penn ESE370 Fall2013 -- DeHon 32
33
Class Ended Here Penn ESE370 Fall2013 -- DeHon 33
34
Switching Power Every time output switches 0 1 pay: –E = CV 2 P dyn = (# 0 1 trans) × CV 2 / time # 0 1 trans = ½ # of transitions P dyn = (# trans) × ½CV 2 / time Penn ESE370 Fall2013 -- DeHon 34
35
Data Dependent Activity Consider an 8b counter –How often do each of the following switch? Low bit? High bit? –Average switching across all 8 output bits? Assuming random inputs (no glitching) –Activity at output of nand4? –Activity at output of xor4? Penn ESE370 Fall2013 -- DeHon 35
36
Glitches Inputs Transition from 0 1 0 1 1 1 –What does output look like? Penn ESE370 Fall2013 -- DeHon 36
37
Charging Power P dyn = (# trans) × ½CV 2 / time Often like to think about switching frequency Useful to consider per clock cycle –Frequency f = 1/clock-period P dyn = (#trans/clock) ½CV 2 f Penn ESE370 Fall2013 -- DeHon 37
38
Charging Power P dyn = (#trans/clock) ½CV 2 f Let a = activity factor a = average #tran/clock P dyn = a½CV 2 f Penn ESE370 Fall2013 -- DeHon 38
39
Chip Level Implications Time Permitting Penn ESE370 Fall2013 -- DeHon 39
40
Billion Transistor Leakage 4 Billion transistors Say 1 Billion gates Each with one W=2 transistor leaking How much leakage current? Penn ESE370 Fall2013 -- DeHon 40
41
ITRS 2009 45nm Penn ESE370 Fall2013 -- DeHon 41 High Performance I sd,leak 100nA/ m I sd,sat 1200 A/ m C g,total 1fF/ m V th 285mV I leak0 = 0.045 m × I sd,leak
42
Leakage Power 4 Billion Transistor chip doing nothing Total Leakage? Leakage Power? Penn ESE370 Fall2013 -- DeHon 42
43
Reduce Leakage? P=VI How do we reduce leakage? Penn ESE370 Fall2013 -- DeHon 43
44
ITRS 2009 45nm Penn ESE370 Fall2013 -- DeHon 44 High Performance Low Power I sd,leak 100nA/ m50pA/ m I sd,sat 1200 A/ m560 A/ m C g,total 1fF/ m0.91fF/ m V th 285mV585mV I leak0 = 0.045 m × I sd,leak
45
Low Power Process 4 Billion Transistor chip doing nothing Total Leakage? Leakage Power? Penn ESE370 Fall2013 -- DeHon 45
46
ITRS 2009 45nm Penn ESE370 Fall2013 -- DeHon 46 High Performance Low Power I sd,leak 100nA/ m50pA/ m I sd,sat 1200 A/ m560 A/ m C g,total 1fF/ m0.91fF/ m V th 285mV585mV C 0 = 0.045 m × C g,total C 0 = 0.045 × 10 -15 F
47
Switching Power 4 Billion Transistors –Organized into 1 billion gates (e.g. nand2) C load = 22C 0 a=0.2 f=1GHz Power? Penn ESE370 Fall2013 -- DeHon 47
48
Switching Power V=1V C load =22C 0 ≈ 1 fF = 10 -15 F P=a(0.5×10 -15 )(N gate )f a=0.2 P=10 -16 (N gate )f Penn ESE370 Fall2013 -- DeHon 48
49
Dynamic vs. Static Power At what speed (f) does leakage power dominate switching power? Penn ESE370 Fall2013 -- DeHon 49
50
Compare W N = 2 I leak = 9×10 -9 A P=a(0.5×10 -15 ) f + 9×10 -9 W a=0.2 P=10 -16 ×f + 9×10 -9 W For what freqs does leakage power dominate switching power? Penn ESE370 Fall2013 -- DeHon 50
51
Ideas Three components of power –Static –Short-circuit –Charging P tot = P static + P sc + P dyn Penn ESE370 Fall2013 -- DeHon 51
52
Admin HW6 due Thursday Normal lecture Wednesday and Friday Penn ESE370 Fall2013 -- DeHon 52
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.