Download presentation
Presentation is loading. Please wait.
Published byPercival Damon Dawson Modified over 9 years ago
1
Measurement of the 26 Al(d,p) 27 Al reaction to constrain the 26 Al(p, ) 27 Si reaction rate Steven D. Pain Oak Ridge National Laboratory NS12, Argonne, 2012 Astrophysical significance of 26 Al Previous measurements 26 Al(d,p) measurement
2
26 Al - Background 26 Al nucleus was the first radioisotope detected in the interstellar medium Half life of 7.2x10 5 years Observation of rays associated with its decay provides evidence of nucleosynthesis Temperatures ≥ 0.03 GK, the 26g Al(p, ) 27 Si reaction is expected to contribute to the destruction of 26 Al N. Prantzos, R. Diehl. Physics Reports 267 1-69 (1996) 5 + gs, 0 + isomeric state at 228 keV
3
26 Al - Background Core-collapse supernovae Novae Massive stars (WR, AGB) >30 M O stars – develop strong stellar winds blowing material into space T < 0.1 GK accretion onto a white dwarf estimated < 0.4 M O 26 Al ejected – depends on uncertain reactions T < 0.4 GK constrain 26 Al(p, ) rates for massive stars massive star collapses T c ~ 3 GK long favored source N. Prantzos, R. Diehl. Physics Reports 267 1-69 (1996) 5 + gs, 0 + isomeric state at 228 keV
4
26 Al – Early inference Excess of 26 Mg found in calcium and aluminium inclusions of the Allende meteorite February 8, 1969 Several tons of material deposited Material dated to predate formation of the Earth First inference of ongoing 26 Al synthesis Allende
5
26 Al – Early observation Largest germanium spectrometer placed in orbit at that time HEAO (High Energy Astronomy Observatory) 1979-1981 First astronomical observation of 26 Al Four p-type Ge detectors CsI anti-coincidence High Resolution Gamma Ray Spectrometer (HRGRS): 50 keV - 10 MeV 3 keV resolution FOV 30°
6
26 Al – Astronomical mapping NE 213A NaI Energy resolution 5 - 8% (FWHM) Angular resolution 1.7 - 4.4 degrees (FWHM) Launched 1991 Weight: 1460 kg Dimensions: 2.61 m x 1.76 m diameter Power: 206 W young giant stars Compton Gamma Ray Observatory - COMPTEL
7
INTEGRAL Launched October 2002 Field of View fully coded: 14° flat to flat, 16° corner to corner Energy resolution (FWHM): 2.2 keV at 1.33 MeV for each detector (3 keV for the entire spectrometer) Angular resolution 2.5° for point sources 19 Ge detectors
8
Galactic presence of 26 Al SPI (INTEGRAL) Line width dominated by instrumental resolution Doppler shifts suggest 26 Al is co-rotating with the Galaxy
9
Astrophysically Important States 6 68 94 127 189 231 241 276 332 368 429 508 0.11T(GK) Lotay et al., PRL 102, 162502 (2009)
10
Astrophysically Important States – proton transfer study 127 keV Isotopically enriched target (6.3% 26 Al/ 27 Al) 26 Al( 3 He,d) 27 Si 189 keV 276 keV Vogelaar et al, PRC 53 1945 (1996) Upper limit on 127 keV resonance (S<0.02)
11
Identification of mirror states in 27 Al Fusion-evaporation reaction to populate states and study γ decays with Gammasphere 6 pnA, 26 MeV beam of 16 O ions on ~150 μ g/cm² 12 C target Location of low-lying resonances constrained stellar rate, assuming: –0.001 < S < 0.02 (Vogelaar upper limit) for 127 keV –0.01 < S < 0.3 for 68 keV resonance S for these states necessary for further constraint on the reaction rate 27 Si 27 Al E res (keV)E ex JJ 674685/2 + 6875325/2 + 7578 947557 7858 12775929/2 + 7806 189765211/2 + 7948 23176905/2 + 24177027/2 + 27677409/2 + 33277927/2 + 36878319/2 - lowest direct (p, ) measurement C. Ruiz et al., PRL 96 252501 (2006) G. Lotay et al, PRL 102 162502 (2009)
12
Identification of mirror states in 27 Al 27 Si 27 Al E res (keV)E ex JJ 674685/2 + 6875325/2 + 7578 947557 7858 12775929/2 + 7806 189765211/2 + 7948 23176905/2 + 24177027/2 + 27677409/2 + 33277927/2 + 36878319/2 - G. Lotay et al, PRL 102 162502 (2009) lowest direct (p, ) measurement C. Ruiz et al., PRL 96 252501 (2006) 0.11T(GK) AGB + WR stars
13
26 Al(d,p) 27 Al data – Setup 117 MeV 26 Al 5x10 6 pps 150 g/cm 2 CD 2 MCP normalization (200 kHz) QQQ stack ORRUBA SIDAR 45 90 7560 15 10 5 100130 10 5 115 12 C d p 135 5 2.5 150 165 MCPs
14
26 Al(d,p) 27 Al – Excitation Energy 42681013579 E x (MeV) 165 deg 138 deg 75 keV (CoM) 180 keV (CoM)
15
26 Al(d,p) 27 Al – Excitation Energy 42681013579 E x (MeV) 164 deg 138 deg ℓ p = 0 75 keV (CoM) 180 keV (CoM) Astro
16
26 Al(d,p) 27 Al – carbon background PRELIMINARY ~ 164° ~ 145° Run on carbon foil to determine form of background from reactions on carbon
17
26 Al(d,p) 27 Al – magnesium contamination PRELIMINARY ~ 164° ~ 145° Run with 26 Mg beam (5+) to determine background peaks from reactions 26 Mg(d,p) Astro
18
26 Al(d,p) 27 Al – Background subtracted excitation energy 42681013579 E x (MeV) 3004 keV (9/2 + ) PRELIMINARY FWHM ~ 75 keV (CoM) 4510 keV (11/2 + ) 5550 keV 11/2 + 6948 keV 11/2 +
19
26 Al(d,p) 27 Al – Excitation Energy 42681013579 E x (MeV) PRELIMINARY 7858 7806 7798 7721 3/2 + 9/2 + (3/2, 5/2, 7/2) 5/2 FWHM ~ 75 keV (CoM) 7804(12) keV 127 keV mirror? NNDC
20
26 Al(d,p) 27 Al – Excitation Energy 42681013579 E x (MeV) FWHM ~ 75 keV (CoM) PRELIMINARY S = 0.018(6) 7804(12) keV 127 keV mirror
21
26 Al(d,p) 27 Al – Excitation Energy 42681013579 E x (MeV) FWHM ~ 75 keV (CoM) PRELIMINARY 0.11T(GK) Lotay et al., PRL 102, 162502 (2009) 7804(12) keV 127 keV mirror
22
26 Al(d,p) 27 Al – Excitation Energy PRELIMINARY 68 keV mirror 42681013579 E x (MeV) 68 keV mirror 164 deg 132.5 deg 75 keV (CoM) 150 keV (CoM) 0.11T(GK) Lotay et al., PRL 102, 162502 (2009)
23
26 Al is the first radioisotope to have a high-resolution Galactic map Resonances in nova(+) Gamow windows measured directly Understanding the structure of low-lying resonances is important for constraining the 26 Al(p, ) 27 Si rate in massive stars Measured single-particle strengths of mirror levels via 26 Al(d,p) for constraining stellar reaction rate –Population of mirror to the 127 keV ℓ = 0 resonance –(preliminary 2 ) S ~ 0.018(6) - comparable to upper limit set by ( 3 He,d) measurement (S < 0.02) –Mirror calculations (Marek Ploszajczak, GANIL) –Further analysis required to constrain ℓ = 2 state at angles closer to 90 deg; 68 keV mirror is very weakly populatedSummary
24
D.W. Bardayan, C.D. Nesaraja, M.S. Smith, D. Shapira, F. Liang Oak Ridge National Laboratory K.Y. Chae, K.L. Jones, S.T. Pittman, K.T. Schmitt University of Tennessee K.A. Chipps J.A. Cizewski, P.D. O’Malley, S. Hardy Rutgers University C. Matei, W.A. Peters Oak Ridge Associated Universities R.L. Kozub, J.F. Shriner Tennessee Tech. University J.C. Blackmon, M. Matos Louisiana State University P.D. Parker Louisiana State University G.L. Wilson University of Surrey Collaborators
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.