Presentation is loading. Please wait.

Presentation is loading. Please wait.

Impact of MD on AVO Inversion

Similar presentations


Presentation on theme: "Impact of MD on AVO Inversion"— Presentation transcript:

1 Impact of MD on AVO Inversion
Jianhua Yu University of Utah

2 Outline Motivation Methodology Numerical Tests Conclusions
Synthetic data Field marine data Conclusions

3 Prestack migration based AVO Inversion
Prestack migration to generate the common offset data, CRGs, and angle gathers AVO analysis or inversion (Shuey, 1985)

4 What Influences the Accuracy of AVO?
Preprocessing such as amplitude balance, demultiple etc. Migration noise, footprint due to coarse acquisition

5 Migration Problem Seismic Trace Migration Ellipse Layer 1 Layer 2
Incorrect Contribution Layer 1 Layer 2 Actual reflection point

6 Migration Deconvolution
Reduce prestack migration noise and artifacts Improve prestack migration image

7 Motivation Develop a MD-AVO method Reduce migration artifacts
Improve data for AVO analysis and seismic attribute analysis

8 Outline Motivation Methodology Numerical Tests Conclusions
Synthetic data Field marine data Conclusions

9 Migration Section = Blurred Image of true reflectivity model m
Migration Deconvolution m’ = L d T L m but d = L m Migrated Section Migration Section = Blurred Image of true reflectivity model m Data

10 How to Get the True Reflectivity Model m
Deconvolve the point scatterer response from the migration image T m = (L L ) m’ -1 Reflectivity Migrated Section Deblurring filter

11 How MD conjunct with AVO
Data in common offset domain satisfies the local property of MD filter Common offset section is natural domain for AVO analysis

12 Processing Steps: Preprocessing : Geometric spreading correction, amplitude balancing, and demultiple Velocity analysis and estimate RMS velocity model for migration in time domain Prestack migration/inversion to generate the migrated COG and angle gathers

13 MD-AVO Methodology Apply MD to common offset sections
Normal AVO parameter inversion Apply MD to AVO section

14 Outline Motivation Methodology Numerical Tests Conclusions
Synthetic data Field marine data Conclusions

15 Outline Motivation Methodology Numerical Tests Conclusions
Synthetic data Field marine data Conclusions

16 Prestack Migrated COG (45-55) Section
X(km) X(km) 1 5 1 5 2.5 2.5 CDP 150 Time (s) Mig Mig + MD

17 Closeup of COG (45-55) Section
X(km) X(km) 1 2 1 2 0.5 2.5 0.5 2.5 CDP 150 Time (s) Mig Mig+ MD

18 Spectrums of Mig and MD Images
Trace No. Trace No. 100 110 100 110 0.0 60 0.0 60 CDP 150 Frequency (Hz) Mig Mig + MD

19 Close-up of One CRG Mig Mig + MD X(km) X(km) 1 1.8 1 1.8 0.6 1.8 0.6
Time (s) Mig Mig + MD

20 Outline Motivation Methodology Numerical Tests Conclusions
Synthetic data Field marine data Conclusions

21 Time (s) Offset (km) Velocity (km/s) 0.26 2.0 1.5 3.5 1.0 3.0 1.0 3.0
CDP 150 CDP 150 Time (s)

22 RMS Amp. before and after preprocessing
Shot Number 200 800 -6.0 1.442 Offset (km) -3.5 Raw data -6.0 0.322 -3.5 After preprocessed RMS Amp. before and after preprocessing

23 m = (L L ) L d Get ghosts: Dg=Lmg Primary: dp=d-dg
Least Squares Inversion for Demultiples (Taner et al. 1969; Lumely et al., 1998; Zhao, 1996) m = (L L ) L d T -1 Velocity model Hyperbolic operator Seismic data Transpose of L Get ghosts: Dg=Lmg Primary: dp=d-dg

24 Time (s) Offset (km) Offset (km) Offset (km) Raw data Demultiple
0.26 2.0 Offset (km) 0.26 2.0 Offset (km) 0.26 2.0 Offset (km) 0.0 3.0 CDP1300 CDP1300 CDP1300 Time (s) Raw data Demultiple Multiples

25 Time (s) Offset (km) Offset (km) NMO raw data NMO demultiple 0.26 2.0
0.0 3.0 0.0 3.0 CDP 1300 CDP 1300 Time (s) NMO raw data NMO demultiple

26 Time (s) Velocity (km/s) Velocity (km/s) Raw data Demultiple 1.5 3.5
0.0 3.0 0.0 3.0 CDP 1300 CDP 1300 Time (s) Raw data Demultiple

27 Time (s) Offset (km) Offset (km) NMO raw data NMO demultiple 0.26 2.0
0.0 3.0 0.0 3.0 CDP 1764 CDP 1764 Time (s) AVO ? 2.1 NMO raw data NMO demultiple

28 RMS Velocity Model X (km) 21 3.5 Time (s) 1.5 m/s 5.0

29 Comparison of Estimated RMS Velocity and Well Sonic Data
Time (s) 3 5 Well Vrms Well Vint Velocity (km/s) Estimated Vrms 1

30 Stacked Section X (km) 20 7 WELL Time (s) 3.5

31 Migration Section X (km) 20 7 Time (s) 3.5

32 MD Result X (km) 20 7 Time (s) 3.5

33 Comparison of Mig and MD
X (km) X (km) 12 18 12 18 Mig Mig+MD Reservoir Reservoir Time (s) 3.5

34 * P S AVO Parameter : Before MD Reservoir Reservoir After MD X (km)
12.1 X (km) 13.6 1.98 Before MD Reservoir - -3.6 - +2.3 2.20 Time (s) 1.98 Reservoir After MD 2.20

35 HCI Section Before and After MD
X (km) X (km) 18 7 18 7 1.6 Reservoir Time (s) 2.7 Before MD After MD

36 Outline Motivation Methodology Numerical Tests Conclusions
Synthetic data Field marine data Conclusions

37 Conclusions Improves stratigraphic resolution
Attenuates migration noise and artifacts Helps to identify lithology anomaly in AVO section

38 Future Work Blind Test on More Real Data
(We look forward to the donation of data from sponsors) Develop 3-D Prestack MD for Field Data Processing

39 Acknowledgment Thank 2001 UTAM sponsors for the financial support


Download ppt "Impact of MD on AVO Inversion"

Similar presentations


Ads by Google