Presentation is loading. Please wait.

Presentation is loading. Please wait.

CS261 Data Structures Dijkstra’s Algorithm – Edge List Representation.

Similar presentations


Presentation on theme: "CS261 Data Structures Dijkstra’s Algorithm – Edge List Representation."— Presentation transcript:

1 CS261 Data Structures Dijkstra’s Algorithm – Edge List Representation

2 Weighted Graphs Representation: Edge List Pendleton Pierre Pensacola Princeton Pittsburgh Peoria Pueblo Phoenix Pendleton:{Pueblo:8, Phoenix:4} Pensacola:{Phoenix:5} Peoria:{Pueblo:3, Pittsburgh:5} Phoenix:{Pueblo:3, Peoria:4, Pittsburgh:10} Pierre:{Pendleton:2} Pittsburgh:{Pensacola:4} Princeton:{Pittsburgh:2} Pueblo:{Pierre:3} 2 8 4 3 3 3 4 5 10 5 4 2 What’s reachable AND what is the cheapest cost to get there?

3 Initialize map of reachable vertices, and add source vertex,v i, to a priority queue with distance zero While priority queue is not empty Getmin from priority queue and assign to v If v is not in reachable add v with given cost to map of reachable vertices For all neighbors, v j, of v If v j is not is set of reachable vertices, combine cost of reaching v with cost to travel from v to v j, and add to priority queue Dijkstra’s Algorithm Pendleton Pierre Pensacola Princeton Pittsburgh Peoria Pueblo Phoenix 2 4 3 3 4 3 5 4 10 8 5 2 Cost -First Search

4 Example: What is the distance from Pierre? Pendleton Pierre Pensacola Princeton Pittsburgh Peoria Pueblo Phoenix ------------ Pierre: 0 2 4 3 3 4 3 5 4 10 8 5 2 PqueueReachable 0pierre(0){}

5 Example: What is the distance from Pierre? Pendleton Pierre Pensacola Princeton Pittsburgh Peoria Pueblo Phoenix ------------ Pierre: 0 2 4 3 3 4 3 5 4 10 8 5 2 PqueueReachable 0pierre(0){} 1pendleton(2)pierre(0)

6 Example: What is the distance from Pierre? ------------ Pierre: 0 Pendleton Pierre Pensacola Princeton Pittsburgh Peoria Pueblo Phoenix 2 4 3 3 4 3 5 4 10 8 5 2 PqueueReachable 0pierre(0){} 1pendleton(2)pierre(0) 2phoenix(6), pueblo(10) pendleton(2)

7 Example: What is the distance from Pierre? ------------ Pierre: 0 Pendleton Pierre Pensacola Princeton Pittsburgh Peoria Pueblo Phoenix 2 4 3 3 4 3 5 4 10 8 5 2 PqueueReachable 0pierre(0){} 1pendleton(2)pierre(0) 2phoenix(6), pueble(10) pendleton(2) 3pueblo(9), peoria(10), pittsburgh(16), pueblo(10) phoenix(6) NOTE: Reachable is only showing the latest node added to the collection!

8 Example: What is the distance from Pierre? ------------ Pierre: 0 Pendleton Pierre Pensacola Princeton Pittsburgh Peoria Pueblo Phoenix 2 4 3 3 4 3 5 4 10 8 5 2 PqueueReachable 0pierre(0){} 1pendleton(2)pierre(0) 2phoenix(6), pueble(10) pendleton(2) 3pueblo(9), peoria(10), pittsburgh(16), pueblo(10) phoenix(6) 4peoria(10), pittsburgh(16), pueblo(10) pueblo(9)

9 Example: What is the distance from Pierre? ------------ Pierre: 0 Pendleton Pierre Pensacola Princeton Pittsburgh Peoria Pueblo Phoenix 2 4 3 3 4 3 5 4 10 8 5 2 PqueueReachable 0pierre(0){} 1pendleton(2)pierre(0) 2phoenix(6), pueble(10) pendleton(2) 3pueblo(9), peoria(10), pittsburgh(16), pueblo(10) phoenix(6) 4peoria(10), pittsburgh(16), pueblo(10) pueblo(9) 5pueblo(10) pittsburgh(15), pittsburgh(16), peoria(10)

10 Example: What is the distance from Pierre? ------------ Pierre: 0 PqueueReachable 0pierre(0){} 1pendleton(2)pierre(0) 2phoenix(6), pueble(10) pendleton(2) 3pueblo(9), peoria(10), pittsburgh(16), pueblo(10) phoenix(6) 4peoria(10), pittsburgh(16), pueblo(10) pueblo(9) 5pueblo(10) pittsburgh(15), pittsburgh(16), peoria(10) 6pittsburgh(15), pittsburgh(16) -- Pendleton Pierre Pensacola Princeton Pittsburgh Peoria Pueblo Phoenix 2 4 3 3 4 3 5 4 10 8 5 2

11 Example: What is the distance from Pierre? ------------ Pierre: 0 Pendleton Pierre Pensacola Princeton Pittsburgh Peoria Pueblo Phoenix 2 4 3 3 4 3 5 4 10 8 5 2 PqueueReachable 0pierre(0){} 1pendleton(2)pierre(0) 2phoenix(6), pueble(10) pendleton(2) 3pueblo(9), peoria(10), pittsburgh(16), pueblo(10) phoenix(6) 4peoria(10), pittsburgh(16), pueblo(10) pueblo(9) 5pueblo(10) pittsburgh(15), pittsburgh(16), peoria(10) 6pittsburgh(15), pittsburgh(16) -- 7pittsburgh(16), pensacola(19) pittsburgh(15)

12 Example: What is the distance from Pierre? ------------ Pierre: 0 PqueueReachable 0pierre(0){} 1pendleton(2)pierre(0) 2phoenix(6), pueble(10) pendleton(2) 3pueblo(9), peoria(10), pittsburgh(16), pueblo(10) phoenix(6) 4peoria(10), pittsburgh(16), pueblo(10) pueblo(9) 5pueblo(10) pittsburgh(15), pittsburgh(16), peoria(10) 6pittsburgh(15), pittsburgh(16) -- 7pittsburgh(16), pensacola(19) pittsburgh(15) 8pensacola(19)-- Pendleton Pierre Pensacola Princeton Pittsburgh Peoria Pueblo Phoenix 2 4 3 3 4 3 5 4 10 8 5 2

13 Example: What is the distance from Pierre? ------------ Pierre: 0 Pendleton Pierre Pensacola Princeton Pittsburgh Peoria Pueblo Phoenix 2 4 3 3 4 3 5 4 10 8 5 2 PqueueReachable 0pierre(0){} 1pendleton(2)pierre(0) 2phoenix(6), pueble(10) pendleton(2) 3pueblo(9), peoria(10), pittsburgh(16), pueblo(10) phoenix(6) 4peoria(10), pittsburgh(16), pueblo(10) pueblo(9) 5pueblo(10) pittsburgh(15), pittsburgh(16), peoria(10) 6pittsburgh(15), pittsburgh(16) -- 7pittsburgh(16), pensacola(19) pittsburgh(15) 8pensacola(19)-- 9{}pensacola(19)

14 Dijkstra’s Cost-first search Always explores the next node with the CUMULATIVE least cost Our implementation: O(V+E Log E) – Key observation: Inner loop runs at most E times – Time to add/rem from pqueue is bounded by logE since all neighbors, or edges, can potentially be on the pqueue – V comes from the initialization of reachable assume reachable is an array or hashTable

15 Initialize map of reachable vertices, and add source vertex,v i, to a priority queue with distance zero While priority queue is not empty Getmin from priority queue and assign to v If v is not in reachable add v with given cost to map of reachable vertices For all neighbors, v j, of v If v j is not is set of reachable vertices, combine cost of reaching v with cost to travel from v to v j, and add to priority queue O(V+ E Log E) – Key observation: Inner loop runs at most E times – Time to add/rem from pqueue is bounded by logE since all neighbors, or edges, can potentially be on the pqueue

16 Summary Same code, three different ADTs result in three kinds of searches!!! – DFS (Stack) – BFS (Queue) – Dijkstras Cost-First Search (Pqueue) Initialize set of reachable vertices and add v i to a [stack, queue, pqueue] While [stack, queue, pqueue] is not empty Get and remove [top, first, min] vertex v from [stack, queue, pqueue] if vertex v is not in reachable, add it to reachable For all neighbors, v j, of v, not already in reachable add to [stack, queue, pqueue] (in case of pqueue, add with cumulative cost)

17 Implementation of Dijkstra’s Pqueue: dynamic array heap Reachable: – Array indexed by node num – map: name, distance – hashMap Graph Representation: edge list with weights[map of maps] – Key: Node name – Value: Map of Neighboring nodes Key: node name of one of the neighbors Value: weight to that neighbor

18 Your Turn Complete Worksheet #42: Dijkstra’s Algorithm


Download ppt "CS261 Data Structures Dijkstra’s Algorithm – Edge List Representation."

Similar presentations


Ads by Google