Download presentation
Presentation is loading. Please wait.
Published byBrianna Hall Modified over 9 years ago
1
Penn ESE370 Fall2011 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 2: September 9, 2011 Transistor Introduction
2
Today MOSFET Capacitive and resistive loads Zero-th order transistor model –Good enough for [what?] Diagnostic Quiz (12:40pm) Penn ESE370 Fall2011 -- DeHon 2
3
MOSFET Metal Oxide Semiconductor Field Effect Transistor –New device –Primary active component for the term –Three terminal device Voltage at gate controls conduction between two other terminals (source, drain) Penn ESE370 Fall2011 -- DeHon 3
4
MOSFET I vs. Vgs, Vds Penn ESE370 Fall2011 -- DeHon 4 I DS
5
MOSFET I vs. Vgs, Vds Will dig into understanding during term Today: simple ways to reason about gross behavior –Static/DC Penn ESE370 Fall2011 -- DeHon 5
6
Preclass What voltage do the cases converge to? Penn ESE370 Fall2010 -- DeHon 6
7
7
8
8
9
9
10
10
11
Conclude? DC/Steady-State –Ignore the capacitors Penn ESE370 Fall2010 -- DeHon 11
12
Quasistatic Static – inputs (and circuit) unchanging, how does it settle? Dynamic – what happens when things change Quasi-Static – inputs transition, circuit responds, and settles –Dynamic transition to roughly static states Penn ESE370 Fall2011 -- DeHon 12
13
Quasistatic Relevance? How relevant to a combinational digital circuit? How relevant to a clocked digital circuit? Penn ESE370 Fall2011 -- DeHon 13
14
Zero-th Order MOSFET Ideal Switch Vgs > Vth conducts Vgs < Vth does not conduct Vth – threshold voltage Gate draws no current from input –Loads input capacitively Penn ESE370 Fall2011 -- DeHon 14
15
Zero-th Order MOSFET Penn ESE370 Fall2011 -- DeHon 15 I DS
16
N-Type, P-Type MOSFET N – negative carriers –electrons Switch turned on positive Vgs P – positive carriers –holes Switch turned on negative Vgs Penn ESE370 Fall2011 -- DeHon 16 Vthp<0 Vgs<Vthp to to conduct
17
Symmetry Device is symmetric Doesn’t know source from drain Think of it as a resistor: –Also doesn’t know difference between two ends –Which way does current flow? N-type: –Electrons are carriers –Electrons charged? negative –Electrons flow from src drain –From which voltage? Lowest voltage highest –Drain is ? most positive terminal Penn ESE370 Fall2011 -- DeHon 17
18
Symmetry Device is symmetric Doesn’t know source from drain Think of it as a resistor: –Which way does current flow? P-type: –Holes are carries –Holes charged how? positively –Holes flow from src drain –From which voltage? Highest voltage lowest –Drain is? most negative terminal Penn ESE370 Fall2011 -- DeHon 18
19
Zero-th Order MOSFET Penn ESE370 Fall2011 -- DeHon 19 I DS
20
Why zero-order useful? Penn ESE370 Fall2011 -- DeHon 20
21
What happens when Vin=Vdd>Vthn Penn ESE370 Fall2011 -- DeHon 21 Vthp=-Vthn
22
What happens when Vin=Vdd>Vth Penn ESE370 Fall2011 -- DeHon 22 Vgs=Vdd > Vthn Vthp=-Vthn
23
What happens when Vin=Vdd>Vth Penn ESE370 Fall2011 -- DeHon 23 Vgs=Vdd > Vth Vthp=-Vthn
24
What happens when Vin=Vdd>Vth Penn ESE370 Fall2011 -- DeHon 24 Vgs=Vdd > Vth Vgs=0 > Vthp Vthp=-Vthn
25
What happens when Vin=Vdd>Vth Penn ESE370 Fall2011 -- DeHon 25 Vgs=Vdd > Vthn Vgs=0 > Vthp Vthp=-Vthn
26
What happens when Vin=Vdd>Vth Penn ESE370 Fall2011 -- DeHon 26 Vgs=Vdd > Vthn Vgs=0 > Vthp V2=Gnd Vthp=-Vthn
27
What happens when Vin=Vdd>Vth Penn ESE370 Fall2011 -- DeHon 27 Vgs=Vdd > Vthn Vgs=0 > Vthp V2=Gnd Vgs=0 < Vthn Vthp=-Vthn
28
What happens when Vin=Vdd>Vth Penn ESE370 Fall2011 -- DeHon 28 Vgs=Vdd > Vthn Vgs=0 > Vthp V2=Gnd Vgs=0 < Vthn Vthp=-Vthn
29
What happens when Vin=Vdd>Vth Penn ESE370 Fall2011 -- DeHon 29 Vgs=Vdd > Vthn Vgs=0 > Vthp V2=Gnd Vgs=0 < Vthn Vgs=-Vdd < Vthp Vout=Vdd Vthp=-Vthn
30
What happens when Vin=0<Vth Penn ESE370 Fall2011 -- DeHon 30 Work on board
31
What happens when Vin=0<Vth Penn ESE370 Fall2011 -- DeHon 31 V2=Vdd Vout=0
32
What function? Buffer Vin=Vdd Vout=Vdd Vin=0 Vout=0 Penn ESE370 Fall2011 -- DeHon 32
33
Why Zeroth Order Useful? Allows us to reason (mostly) at logic level about steady-state functionality of typical gate circuits Make sure understand logical function (achieve logical function) before worrying about performance details Penn ESE370 Fall2011 -- DeHon 33
34
Why adequate? Static analysis – can ignore capacitors Capacitive loads – resistances don’t matter Feed forward for gates – –don’t generally have loops –can work forward from known values Logic drive rail-to-rail –Don’t have to reason about intermediate voltage levels Penn ESE370 Fall2011 -- DeHon 34
35
What not tell us? Delay Dynamics Behavior if not –Capacitively loaded –Acyclic (if there are Loops) –Rail-to-rail drive Penn ESE370 Fall2011 -- DeHon 35
36
Admin Piazza should have received mail from Paul Gurniak HW1 posted due next Friday –…important to lab next Friday Penn ESE370 Fall2011 -- DeHon 36
37
Big Ideas MOSFET Transistor as switch Purpose-driven simplified modeling –Aid reasoning –Sanity check –Simplify design Penn ESE370 Fall2011 -- DeHon 37
38
Diagnostic Quiz Turnin Quiz and feedback before leaving (do not turnin preclass keep that) Penn ESE370 Fall2011 -- DeHon 38
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.