Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lesson 8 - 1 Discrete Distribution Binomial Taken from

Similar presentations


Presentation on theme: "Lesson 8 - 1 Discrete Distribution Binomial Taken from"— Presentation transcript:

1 Lesson 8 - 1 Discrete Distribution Binomial Taken from http://www.pendragoncove.info/statistics/statistics.htmhttp://www.pendragoncove.info/statistics/statistics.htm And modified slightly

2 Knowledge Objectives Describe the conditions that need to be present to have a binomial setting. Define a binomial distribution. Explain when it might be all right to assume a binomial setting even though the independence condition is not satisfied. Explain what is meant by the sampling distribution of a count. State the mathematical expression that gives the value of a binomial coefficient. Explain how to find the value of that expression. State the mathematical expression used to calculate the value of binomial probability.

3 Construction Objectives Evaluate a binomial probability by using the mathematical formula for P(X = k). Explain the difference between binompdf(n, p, X) and binomcdf(n, p, X). Use your calculator to help evaluate a binomial probability. If X is B(n, p), find µ x and  x (that is, calculate the mean and variance of a binomial distribution). Use a Normal approximation for a binomial distribution to solve questions involving binomial probability

4 Vocabulary Binomial Setting – random variable meets binomial conditions Trial – each repetition of an experiment Success – one assigned result of a binomial experiment Failure – the other result of a binomial experiment PDF – probability distribution function; assigns a probability to each value of X CDF – cumulative (probability) distribution function; assigns the sum of probabilities less than or equal to X Binomial Coefficient – combination of k success in n trials Factorial – n! is n  (n-1)  (n-2)  …  2  1

5 Binomial Mean and Std Dev A binomial experiment with n independent trials and probability of success p has Mean μ x = np Standard Deviation σ x = √np(1-p)

6 Example 1 Find the mean and standard deviation of a binomial distribution with n = 10 and p = 0.1 Mean: μ x = np = 10(0.1) = 1 Standard Deviation: σ x = √np(1-p) =  10(0.1)(0.9) =  0.9 = 0.9487

7 Using Normal Apx to Binomials As binominal’s number of trials increases the formula for a binomial becomes unworkable (a situation alleviated with statistical software). So statisticians developed a procedure to use a continuous distribution, the normal, to estimate a discrete distribution. This procedure is used later with proportions.

8 Example 2 Sample surveys show that fewer people enjoy shopping than in the past. A survey asked a nationwide random sample of 2500 adults if shopping was often frustrating and time-consuming. Assume that 60% of all US adults would agree if asked the same question, what is the probability that 1520 or more of the sample would agree? P(X ≥ 1520) = 1 – P(X ≤ 1519) = 1 – binomcdf(2500, 0.6, 1519) = 0.2131 x = np = 2500 (0.6) = 1500 σ x = √np(1-p) = √ 2500(0.6)(0.4) =  600 = 24.49 P(X ≥ 1520) = using normCDF(1520, E99, 1500, 24.49) = 0.2071 a difference of 0.0061 or less than 0.6%

9 Example 2 cont Histogram showing normal apx to binomial

10 Simulating Binomial Events To simulate a binomial event, we must know: –how random variable X and “success” is defined –probability of success –number of trials Calculator has a randbin(1,p,n) function that will generate results with “1”s as successes We can store the results in lists and do statistics on the lists as usual

11 Example 3 Each entry in a table of random digits like Table B in our book has a probability of 0.1 of being a zero. a)Find probability of finding exactly 4 zeros in a line 40 digits long. b)What is the probability that a group of five digits from the table will contain at least 1 zero? P(X = 4) = binompdf(40, 0.1, 4) = 0.206 P(X ≥ 1) = 1 – P(X=0) = 1 ‒ binompdf (5, 0.1, 0) =.4095 = 1 – P(no zeros) 5 = 0.4095 (before binomials) = 1 – (0.9) 5 = 0.4095

12 Example 4 A university claims that 80% of its basketball players get their degree. An investigation examines the fates of a random sample of 24 players who entered the program over a period of several years. Of these players, 12 graduated and 12 are no longer in school. If the university's claim is true, a)What is the probability that at most 12 out of 24 players graduate? b) What is the probability that all 24 graduate? binompdf (24,.8, 24) =.0047 P (x < 12) = binomcdf (24,.8, 12) =.000978

13 Summary and Homework Summary –Binomial experiments have 4 specific criteria that must be met –Means and Variance for a Binomial E(X) = np and V(X) = np(1-p) –Normal distribution (continuous) can approximate a Binomial (discrete) –Calculator has a random binomial generator


Download ppt "Lesson 8 - 1 Discrete Distribution Binomial Taken from"

Similar presentations


Ads by Google