Download presentation
Presentation is loading. Please wait.
Published byPaula Gilbert Modified over 9 years ago
1
Front-End electronics for Future Linear Collider calorimeters FJPPL meeting @ KEK C. de La Taille N. Seguin_Moreau IN2P3/LAL Orsay On behalf of the CALICE collaboration http::/www.lal.in2p3.fr/technique/se/flc Slides from JC Brient, S. Blin, C. Jauffret, J. Fleury, G. Martin-Chassard, L. Raux, F. Sefkov
2
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 2 Orsay Micro-Electronics Group A strong team of 9 ASIC designers… = 20% of in2p3 designers = 60% of department research engineers A team with critical mass Expertise in low noise, low power high level of integration ASICs 2 designers/ project 2 projects/designer Regular design meetings …Within an electronics department of 55 Support for tests, mesaurements, PCBs… A steady production 1-2 large productions/year A strong on-going R&D Building blocks SiGe 0.35µm (S. Blin, M. Bouchel, R. Chiche, J. Fleury, CdLT, G. Martin, L. Raux, N.Seguin, V. Tocut)
3
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 3 ASIC production for ATLAS LAr calorimeter ATLAS 128ch front-end board (1700) SHAPER_V3 (1999) 4 ch. tri-gain (1,10,100) fast-shaper (30ns) BiCMOS 1.2µm 70 000 chips HAMAC (2000) 16 ch 12 bits analog memory Ecriture/lecture : 40/5Mhz DMILL 0.8µ 84 000 chips ATLAS 128ch calibration board (135) DAC (2003) R/2R 16 bits DMILL 0.8µ 8 000 chips LOANA (2002) Low offset opamp (<10 µV) + switch HF (50µV 5V à 1 ‰ ) DMILL 0.8µ 40 000 chips (CdLT, N.Seguin, JP Richer) (D. Breton, CdLT, JP Richer, N.Seguin, V. Tocut)
4
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 4 ATLAS : LAr e.m. calorimeter 200 000 channels
5
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 5 Readout ASIC for multi-anode Photomultiplier (Hamamatsu) OPERA_ROC (2002) 32 channels Variable gain preamp Autotrigger on ¼ p.e. BiCMOS 0.8µ 3 000 chips 64 ch front-end board (BERN) ASIC production for OPERA target tracker (S. Blin, T. Caceres, CdLT, G. Martin, L. Raux)
6
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 6 « Imaging calorimetry » at ILC Particle flow algorithm Reconstruct each particle individually Bring jet resolution down to 30%/√E Measure charged particles in tracker Measure photons in ECAL Measure hadrons in ECAL and HCAL Minimize confusion term Calorimeter design High granularity : typ < 1 cm 2 High segmentation : ~30 layers Moderate energy resolution (10%/√E) ECAL : Silicon-Tungsten HCAL : analog vs digital CALICE collaboration « a high granularity calorimeter optimized for particle flow algorithm 190 phys./eng., 9 countries, 3 regions ©J.C Brient (LLR) F. Sefkow (DESY)
7
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 7 ILC Challenges for electronics Requirements for electronics Large dynamic range (15 bits) Auto-trigger on ½ MIP On chip zero suppress Front-end embedded in detector Ultra-low power : ( « 100µW/ch ) 10 8 channels Compactness « Tracker electronics with calorimetric performance » ATLAS LAr FEB 128ch 400*500mm 1 W/ch FLC_PHY3 18ch 10*10mm 5mW/chILC : 100µW/ch W layer Si pads ASIC Ultra-low POWER is the KEY issue
8
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 8 CALICE physics prototype(s) 1 m 3 prototype for physics tests Goal : study particle flow algorithm Check modelization of hadronic showers 3 calorimeters to go to testbeam ECAL : W-Si 24X 0 20x20 cm 2 AHCAL : Tiles + fibers + SiPMs DHCAL : RPCs or GEMS Already 10 4 to 4 10 5 channels ! Run at DESY (05), CERN (06), FNAL (07)
9
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 9 ECAL TCMT HCAL Testbeam at CERN SPS Common DAQ 18’000 ch ECAL HCAL
10
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 10 14 layers, 2.1 mm thick 70 boards made in Korea ECAL W-Si prototype ECAL prototype 1 cm 2 Si PADS, 550 µm 1 MIP = 40 000 e- 216 channels/slab 10 000 channels total Readout electronics FLC_PHY3 ASIC [LAL] Calibration ASIC [LAL] CRC DAQ boards [UK]
11
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 11 FLCPHY3 front-end ASIC Amp OPA G1 G10 1 channel Chip architecture 18 Channels/chip Low noise charge preamp optimized for Cd=70pF. Variable gain (Cf = 0.2 -> 3 pF) ENC = 1000e- + 40 e-/pF @ tp=200ns series noise : en = 1.6nV/√Hz @ 600 µA poor 1/f noise : 25 e-/pF Dual gain shaper (G1-G10) tp = 200 ns splits 15bit dynamic range in 2 x 12 bits Differential shaper and Track&Hold => better pedestal stability and dispersion : pedestal dispersion : 5 mV rms Multiplexed output : 5 MHz Power dissipation : 6mW/channel Technology : AMS 0.8µm BiCMOS 2000 chips produced in 2003, yield : 86% Synoptic of 1 channel of FLCPHY3 ©J. Fleury (LAL)
12
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 12 FLC_PHY3 : performance Measured on all preamp gains Cf = 0.2, 0.4, 0.8, 1.6, 3 pF Well within ± 0.2 % Dynamic range (G1, C f =1.6pF) Max output : 3 V linear (0.1%) range : 2.5V = 500 MIPS @ C f = 1.6 pF Noise : 200 µV (Cd = 0) 410 µV (Cd = 68pF) = 0.1 MIP @ C d = 68 pF Dynamic range : > 12 bits 13 000 (14 bits) @ Cd = 0 6500 (12 bits) @ Cd = 68 pF Can be extended to 13-14 bits by using the bi-gain outputs
13
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 13 Results with detector Testbeam at DESY (jan 05) and at CERN (2006) Calorimeter complete in depth (24 X 0, 8000 channels) MIP/noise = 8 => clean cut at ½ MIP Calibration done with cosmics Noise, MIP 2 adjacent 2 GeV electrons ©G. Gayken (LLR)
14
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 14 AHCAL testbeam prototype 1 cubic metre, 38 layers, 2cm steel plates 8000 tiles with SiPMs Electronics based on ECAL design Mechanics and front end boards: DESY Front end ASICs: LAL ©F. Sefkow (DESY)
15
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 15 SiPMs for calorimetry Multipixel Geiger Mode APDs –Gain 10 6, bias ~ 50 V, size 1 mm 2 –Insensitive to magnetic fields 3x3 cm scintillator tile with WLS fibre ITEP 1156 pixels with individual quenching resistor on common substrate MEPHI / PULSAR Auto-calibrating but non-linear New era for scintillator– based detectors: High granularity at relatively low cost
16
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 16 SiPM readout ASIC Readout AHCAL (DESY) SiPM detector (MEPHI ) >3000 channels : first large scale use G ~ 10 6 e ~10% HV ~ 50 V FLC_SiPM readout ASIC 18 channel variable gain preamp and shaper Dynamic range : 13 bits (2 gains) 8 bit DAC for SiPM gain adjustment 1000 chips produced in 2004 ©L. Raux (LAL) Single photoelectron spectrum © E. Popova Power consumption : ~200mW (supply : 0-5V) Technology : AMS 0.8 m CMOS Chip area : ~10mm² Package : QFP-100
17
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 17 SiPM Connection SiPM connected with followed biasing scheme : HV = 45 V No external circuitry around SiPM +HV Preamp input 50Ω 100nF SiPM 100kΩ 100nF 8-bit DAC ASIC Need 10k here to filter noise High voltage on the cable shielding
18
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 18 Channel architecture for SiPM readout 100nF 10pF Charge Preamplifier : Low noise : 1300e- @40ns Variable gain : 4bits : 0.67 to 10 V/pC CR-RC² Shaper : Variable time constant : 4 bits (12 to 180ns) 12ns photoelectron measurement (calibration mode) 180ns Mip measurement (physic mode) compatibility with ECAL read-out 12kΩ 4kΩ 24pF 12pF 3pF in 8pF4pF2pF1pF 40kΩ 8-bit DAC 0-5V ASIC Rin = 10kΩ 50Ω 100MΩ 2.4pF 1.2pF 0.6pF 0.3pF 0.1pF 0.2pF 0.4pF 0.8pF 6pF
19
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 19 MIP and photo-electron responses Physics mode : Cf=0.4pF- =180ns - Rin ON 1 MIP = 16 p.e. injected (9.5mV in 270pF) Vout = 23 mV @ tp = 160 ns Noise : 1 mV rms Calibration mode : Cf=0.2pF - =12ns - Rin OFF 1 SPE = 0.16pC injected (0.6mV in 270pF) Vout = 11 mV @ tp = 35 ns Noise : 1.2 mV rms
20
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 20 Linearity measurement (physic mode) 0.5% -0.5% Voltage swing : ~2.1V Dynamic Range: 80 MIPs Linearity: <1%
21
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 21 Cross-talk measurement Set-up: Cf=0.4pF, =180ns Channel-to-Channel cross- talk : ~ 1-2‰ :negligible 2 contributions : Capacitive coupling between neighboring channels Long distance crosstalk in all channels (comes from a reference voltage) Non-Direct neighbouring channel x100 Sampling time Capacitive coupling contribution Direct neighbouring channel x100 Long Distance cross-talk contribution
22
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 22 Digital HCAL physics prototype GEM based DHCAL RPC based DHCAL Signal Pad Mylar sheet Aluminum foil 1.1mm Glass sheet Resistive paint 1.2mm gas gap -HV GND Charged particles ©A. White (U. Arlington) J. Repond (ANL)
23
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 23 DHCAL front-end electronics ©J. Hoff, A. Mekaoui (FNAL) DCAL chip 64 inputs with gain choice GEM/RPC Triggerless or triggered operation Output hit pattern & time stamp Prototyped in 0.25µm in march 2005
24
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 24 DCAL chip performance All digital functions operationnal Excellent efficiency curves Threshold adjustable between 2-8 fC DCAL2 chip Submission foreseen july 06 Reduced preamp gain Threshold RPC ~ 100 fC Threshold GEMS ~10 fC ©G. Drake (ANL)
25
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 25 Next steps FLC_PHY3 (2003) HaRD_ROC (2006)
26
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 26 Technological prototype : “EUDET module” Front-end ASICs embedded in detector Very high level of integration Ultra-low power with pulsed mode FLC_TECH1 ASIC prototype in 0.35 µm SiGe All communications via edge 4,000 ch/slab, minimal room, access, power small data volume (~ few 100 kbyte/s/slab) « Stitchable motherboards » Elementary motherboard ‘stitchable’ 24*24 cm ~500 ch. ~8 FE ASICS
27
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 27 Novosibirsk Protvino ITEP MPHI MSU Obninsk KEK (Japan) The EUDET Map EUDET partners EUDET associates May 2006
28
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 28 EUDET : ECAL emodule Electromagnetic calorimeter Prototype of a (~ 1/6) module 0 : one line & one column 150 cm long, 12 cm wide 30 layers 1800 + 10800 channels Test full scale mechanics + PCB Can go in test beam Test full integration + edge communications Similar in #channels as physics prototype ©M. Anduze (LLR)
29
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 29 EUDET module FEE : main issues Mixed signal issues Digital activity with sensistive analog front-end Pulsed power issues Electronics stability Thermal effects To be tested in beam a.s.a.p. No external components Reduce PCB thickness to < 800µm Internal supplies decoupling FE chip (1mm) Wafer (400µm) PCB (600µm) Tungsten (1 mm)
30
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 30 Evolution of PCBs FLC_FEV1 FLC_FEV2 ILC_FEV3
31
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 31 ECAL Front-End ASIC Power Cycling Auto-trigger on ½ MIP Internal ADC Readout integration is the key element of compact detector Keep small Moliere radius for good shower separation Many features have never been used before e.g. power cycling (ON 2ms OFF 200 ms)
32
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 32 EUDET DHCAL RPC ASIC Move towards ILC specs Power pulsing Data internally saved during bunch train Data transferred to DAQ during inter-bunch Chip based on MAROC will be submitted in sep 06 Close to MAROC chip 64 channels for multi-anode PM
33
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 33 MAROC : 64 ch MAPMT chip for ATLAS lumi Characteristics 64 PMT channels input (50-100 Ω) Variable gain current conveyor (0-2) 6 bits : 2, 1, 1/2, 1/4, 1/8, 1/16 64 discriminator outputs (GTL) 100% sensitivity to 1/3 photoelectron (50fC). Counting rate up to 2 MHz Common threshold loaded by internal 10bit DAC 1 multiplexed charge output with variable shaping 20-200ns and Track & Hold. Dynamic range : 11 bits (2fC - 5 pC) Crosstalk < 1% Technology : AMS SiGe 0.35µm Submitted 13 june 05 Area 12 mm 2 Dissipation 130 mW @ VDD=3.5V Can be accomodated to DHCAL Adding power pulsing and digital readout Synoptic diagramm of MAROC1 Hold signal Variab le Gain Pream p. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction 6 bits/channel discriminator threshold 10 bits DAC Multiplexed charge output 64 PM inputs 10 bit DAC Chip On Board 3*3 cm 2
34
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 34 MAROC Efficiency curves
35
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 35 HaRDROC architecture Full power pulsing Digital memory: Data saved during bunch train. Only one serial output Store all channels and BCID for every hit. Depth = 128 bits Data format : 128(depth)*[2bit*64ch+32bit(bcid)+8bit(Header] = 20kbits Sequential readout @ 100 MHz : 20k* 10 ns = 200 µs (read up to 1000 chips/inter bunch) 64 INPUTS 1 OUTPUT Transfered to DAQ during Inter-bunch Hold: Ext signal or OR output Variable Gain Preamp. Variable Slow Shaper 20-100 ns S&H Bipolar Fast Shaper Gain correction 64*6bits G=0 to 4 2 discri thresholds (2*10 bits) 2 DACs 10 bits Latch Vth1 - Vth0 - -Vth1 -Vth0 OR trig1 trig0 Multiplexed Analog charge output trig1 WR S R A M 128 * 160 32 bit counter BCID
36
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 36 HaRDROC layout 64 inputs, 1 data output Vss of the analog, mix and digital part separated 180 pads 64 Analog Channels Digital memory Control signals and power supplies Dual DAC Bandgap Discris
37
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 37 Digital architecture towards 2 nd generation DAQ
38
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 38 Inter chip communication Open collector common control and data line
39
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 39 Acquisition mode Store upto 128 events in RAM Stop acquisition when ram_full signal asserted Common collector bus for ram_full signal
40
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 40 Readout mode Token ring mechanism initiated by DAQ Possibility to bypass a chip by slow control One data line activated by each chip sequentially Readout rate few MHz to minimize power dissipation With 500 pF bus capacitance, power dissipation is ~10uW/chip i=CdV/dt = 1 mA => 1 mW for up to 100 chips on bus Readout time max (ram full) 10kbit * 1 µs = 10 ms/chip
41
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 41 EUDET ECAL ASIC 72 channels Scales with the 4 factor reduction in pad size and is compatible with physics prototype Detector DC coupling Prepares the case the on-detector MMIC HV capacitance is not affordable Provides leakage current monitoring, up to 1 µA/Ch Auto-trigger If one channel is hit during a bunch crossing, then the whole chip is recorded with a time tag (BCID) The auto trigger activates the T&H Analogue pipeline, ADC & digital registers 8-depth analog pipeline to store « in bunch » events Wilkinson 12 bit 100MHz ADC On chip storage, inter-bunch data outputting Digital data output Daisy chained with redundancy : one output for 40 ASICs Common architecture for ECAL and HCAL
42
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 42 Present status on noise & power cycling FLC_TECH1 : moving into SiGe 0.35µ 30 µW in pulsed mode ENC = 1000 e- @ Cd=27pF (MIP=40 000 e -) NOISE WELL BELOW MIP First demonstration of power cycling : Target power of 100 µW/channel appears within reach : to be validated in testbeam in 2006 with FLC PHY4 ASIC FLC shaping Detector capacitance Autotrigger ON signal Ready for pulse RFCFRFCF 20 µs POWER CYCLING MEASUREMENT NOISE MEASUREMENT
43
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 43 General block scheme Ch. 0 Ch. 1 Analog channel Analog mem. 72-channel Wilkinson ADC Analog channel Analog mem. Ch. 71 Analog channel Analog mem. Bunch crossing 24 bit counter Time digital mem. Event builder Memory pointer Trigger control Main Memory SRAM Com module ECAL SLAB
44
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 44 One channel
45
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 45 Time considerations time Time between two trains: 200ms (5 Hz) Time between two bunch crossing: 337 ns Train length 2820 bunch X (950 us) Acquisition 1ms (.5%) A/D conv..5ms (.25%) DAQ.5ms (.25%) 1% duty cycle IDLE MODE 99% duty cycle 199ms (99%)
46
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 46 Wilkinson ADC description Ch.0 Ch.1 Ch.62 Ch.63 Ramp generator 12 bits register 12 bits gray counter 12 start stop reset overflow Start Ramp Reset Ramp 64 Channel hit Register in Wilkinson control 116 start_ADC* 184 RST* 115 out_ADC 114 ADC_DAV Vref_sh Start Cmpt 95 vslope 99 vref_Ramp 97 Ramp Description : - 12 bits - 64 channels - conversion time < 80µs - clock 40 MHz -Serial output ADC= Integrated in MAROC2 and tested
47
Wilkinson ADC results Vref shaper INL (ADC count) vs Vin +1.5 -1.5 ADC count vs Vin
48
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 48 Digital part Store all channels and BCID for every hit. Depth ~8 bits Event size : 8(depth)*[16bit*72ch+16bit(bcid)] = 9344 bits Sequential readout : 9344*10ns = 100 µs : open collector level Register 16bits OR 16 bit counter BCID Register 16bits Discri CH 0 Discri CH 71 Register 16*16 bit BCID
49
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 49 HCAL architecture Typical layer 2m 2 2000 tiles 38 layers 80000 tiles FEE: 32 ASICs (64-fold) 4 readout lines / layer Layer data Concentrator (control, clock and read FEE) Module data concentrator Instrument one tower (e.m. shower size) + 1 layer (few 1000 tiles) To DAQ EUDET: Mechanical structure, electronics integration: DESY and Hamburg U
50
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 50 Prospective for A-HCAL SiPM Chip Similar developments for AHCAL Chip fully dedicated to SiPMs developped after ECAL chip Internal DAC for SiPM gain adjustment (5V range) Auto-trigger (fast shaper + Discriminator) Internal TDC, 1 ns step Internal 12 bit ADC Power pulsing T&H x1 Variable gain Preamplifier Discri TDC 12-bit ADC 8 bit DAC (0-5V) in Fast Shaper Shaper t p ~30-40ns Auto-trigger 12-bit DAC Threshold Capacitance for AC coupling … Analogue Memory Charge Ouput Time Ouput
51
29 sep 2006C. de La Taille front-end electronics for ILC calorimeters. FJPPL KEK meeting 51 Conclusion Several large dynamic range ASICs developped for CALICE physics prototypes ECAL W-Si calorimeter : FLC_PHY3 = 10 4 channels in beam, dynamic range 0.1-600 MIPS AHCAL Tile-SiPM calorimeter : FLC_SiPM = 10 3 channels installed, beam in summer 06 DHCAL GEM/RPC ASICs for technological prototypes now in development Power pulsing, Zero-suppress, Auto-trigger… System aspects not to be forgotten Power supplies ! Mechanics, reliability… Help welcome Measurements on test bench and test beam EUDET postdoc position open at LAL
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.