Presentation is loading. Please wait.

Presentation is loading. Please wait.

Robotics Education Track 2:45 Preview of the PIRE challenge Paul Oh and Doug Blank 3:15 PixelLaser M Korbel, M Leece, K Lei, N Lesperance, S Matsumoto,

Similar presentations


Presentation on theme: "Robotics Education Track 2:45 Preview of the PIRE challenge Paul Oh and Doug Blank 3:15 PixelLaser M Korbel, M Leece, K Lei, N Lesperance, S Matsumoto,"— Presentation transcript:

1 Robotics Education Track 2:45 Preview of the PIRE challenge Paul Oh and Doug Blank 3:15 PixelLaser M Korbel, M Leece, K Lei, N Lesperance, S Matsumoto, and Z Dodds 3:25 Calliope Owen Watson and Dave Touretzky 3:35 Shake Time! Marynel Vazquez, Alex May, Wei-Hsuan Chen 3:45 An iRobot Create Simulator Andrew Hettlinger and Matthew R. Boutell 3:55 IMP: The Intelligent Mobile Projector Keith O'Hara, Anis Zaman, and Aaron Strauss 4:05 Developing a Framework for Team-based Robotics Research Elizabeth Sklar, Simon Parsons, and Susan Epstein 4:15 An Intensive Introductory Robotics Course Without Prerequisites Julian Mason, Gavin Taylor 4:25 PREOP Monica Anderson 3:00-3:15 Break

2 PixelLaser: Range scans from image segmentation Nicole Lesperance ’10 Michael Leece ’10 Steve Matsumoto ’11 Max Korbel ’12 Kenny Lei ’14 Zach Dodds REU

3 Inspiration Horswill (polly) ’94 Saxena (rccar) ’05

4 Scans ? C. Plagemann et al., ICRA 2008 platform"omnicam" imageserrors...

5 Training hand-segmented imagefeatures, in kd-trees 194 191 211 3.2 25.6 4.1... 138 87 53 -1.14 8.6 1.4... filters

6 Nearest-neighbor classification RGB alone doesn’t work well…

7 Nearest-neighbors RGB + texture produces better segmentations

8 Segmentation classification + confidencesegmentations

9 From segmentation to scan pixel row number range row-to-range map scan segmentation

10 Application: CoreSLAM images (6 of 25)

11 Application: CoreSLAM scans (6 of 25)

12 Application: CoreSLAM map

13 Application: MCL Still a work in progress... (speed!)

14

15 Back-up and extra slides are after this one…

16 Segmentation Accuracy vs. Time tradeoffs

17 Scans ΔyΔy yoyo θ α θ α Δy cos(θ) f f / cos(θ) Δy sin(θ) D h For a fixed horizon: For non-fixed horizon: Wheeeee!

18 CoreSLAM

19 ../TrainingImages/Playspacepswo13Patches/00029/randomBelow/0009.png 194.2575 191.4525 211.4775 195.0 192.0 212.0 8.67070895314 8.76885076564 7.29105573631 211.4775 191.4525 194.2575 212.0 192.0 195.0 7.29105573631 8.76885076564 8.67070895314 3113.18473022 2918.61969259 194.707808243 -8.2951355554e-09 -2.99999999989 3.48871383089 -0.1821058002 1.05861940504 0.798119246226 0.142200402323 1.37643522494 1.51710154734 - 3.21108530262 25.6053670274 4.08979546594 0.20963020652 3.42407524192 7.98287776033 0.655198704147 1.40172476457 1.2862398764 -0.068793854887 7.97682628048 3.32687477389 -0.83219461218 2.58844742173 1.83432937157 -0.239667915222 1.22096756236 3.56803311807 0.0253655120168 0.415881369811 7.11907142389 - 0.829352050768 1.14166676605 4.1432245279 -0.33452013644 -0.0121915477333 6.30267114206 -0.714448599523 0.711384510758 3.38445323448 -0.566103623094 -0.00278409428233 5.92992221434 -0.932328715083 1.17018711051../TrainingImages/Playspacepswo13Patches/00026/randomabove/0007.png 138.1075 87.9525 53.4725 138.0 88.0 53.0 3.65184114523 3.44532200962 5.05512054752 53.4725 87.9525 138.1075 53.0 88.0 138.0 5.05512054752 3.44532200962 3.65184114523 1584.29001984 1485.27385943 99.0473083038 2.67691915514e-09 -2.99999999998 0.839568062542 -0.0913685033632 5.68745353063 0.334375851147 -0.0494906892805 5.40416976808 0.617058294109 -1.14642893693 8.69695694778 1.38147297404 -0.87936321568 4.10330225187 1.59491339286 -0.69926257399 0.679234808869 0.526708837532 -0.253691320988 7.92226252642 0.619482921372 -0.155302887182 1.51598656224 0.455410613623 0.896134364593 4.90251778762 1.44298148203 -1.32247289798 1.54652876227 1.82381743704 1.10446810418 0.850926709651 1.23981013329 -0.346508022218 -0.252958061091 1.53636914298 1.26906228604 1.09496630534 1.45689240135 1.4011501228 1.85701734954 1.68840166501 1.0053643485 0.471348780351 194 191 211 3.2 25.6 4.1 138 87 53 -1.14 8.6 1.4


Download ppt "Robotics Education Track 2:45 Preview of the PIRE challenge Paul Oh and Doug Blank 3:15 PixelLaser M Korbel, M Leece, K Lei, N Lesperance, S Matsumoto,"

Similar presentations


Ads by Google