Download presentation
Presentation is loading. Please wait.
Published byHarry Morris Modified over 9 years ago
1
A.Litvinenko VBLHEP JINR 1 The Current status of the MPD@NICA Project at JINR A.Litvinenko for MPD@NICA collaboration litvin@moonhe.jinr.ru
2
A.Litvinenko VBLHEP JINR 2 MPD@NICA Project ( The Multi Purpose Detector(MPD) is designed to study Heavy Ion collisions at the Nuclotron-based heavy Ion Collider fAcility(NICA) at JINR, Dubna.
3
A.Litvinenko VBLHEP JINR 3 Motivation Observables Detector conception Simulation of some tasks Conclusions Outline
4
A.Litvinenko VBLHEP JINR 4 MPD@NICA Project ( The Multi Purpose Detector(MPD) is designed to study Heavy Ion collisions at the Nuclotron-based heavy Ion Collider fAcility(NICA) at JINR, Dubna. Colliding nuclei up to the Au Energy Luminosity
5
A.Litvinenko VBLHEP JINR 5 http://nica.jinr.ru/ http://nica.jinr.ru/files/CDR_MPD/MPD_CDR_en.pdf http://nica.jinr.ru/files/WhitePaper.pdf
6
A.Litvinenko VBLHEP JINR 6 NICA SYNCHROPHASOTRON NUCLOTRON Fix. Targ. Experiments MPD
7
A.Litvinenko VBLHEP JINR 7 MPD general view
8
A.Litvinenko VBLHEP JINR 8 Some history Energy Time NA-49 NA-61 NICA PHENIX STAR CBM
9
A.Litvinenko VBLHEP JINR 9 Why the initial energy Parameter of Fireball (Parameters of exited hadronic matter) 1.Baryon density 2.Energy density ( Bjorken equation) Energy density increases with increasing initial energy Baryon density decreases with increasing initial energy
10
A.Litvinenko VBLHEP JINR 10 PHOBOS DATA Energy density density of charged hadrons
11
A.Litvinenko VBLHEP JINR 11 Baryon charge of fireball can be obtained from net-proton distribution Net protons = By the way, is often used Stopping power and
12
A.Litvinenko VBLHEP JINR 12 Lattice QCD F. Karsch, Lecture Notes in Physics 583 (2002) 209. RHIC Energy Small baryon density
13
A.Litvinenko VBLHEP JINR 13 Rough estimation – ideal mass less gas Bosons -- 1- degree of freedom: Fermions -- 1- degree of freedom: 2 quarks 3 quarks
14
A.Litvinenko VBLHEP JINR 14 For
15
A.Litvinenko VBLHEP JINR 15 Creation of the deconfirment QGP state in heavy-ion collisions, Kind of transition depends on the net baryon density high baryon density first order transition to QGP
16
A.Litvinenko VBLHEP JINR 16 The horn in strangeness yield NA-49 data
17
A.Litvinenko VBLHEP JINR 17 There is experimental indication on singularity at NICA energy The initial energy scan is necessary for determination of EoS parameters It is interesting to know where is critical point The first order transition can give many interesting signals including signals from mixed phase. Conclusions I
18
A.Litvinenko VBLHEP JINR 18 Nuclei collisions complicated process. To study it we need a lot of observables.
19
19 Space-time structure of heavy ions collisions kinetic freeze-out (no collisions) Chemical freeze-out (no particles production) Parton-parton interaction Initial inelastic collisions world line
20
A.Litvinenko VBLHEP JINR 20 Observables Particles ratios temperature and chemical potential at Chemical Freezeout
21
A.Litvinenko VBLHEP JINR 21 Observables Particle spectra temperature and expansion velosity at Kinematic Freezeout
22
A.Litvinenko VBLHEP JINR 22 elliptic flow Coordinate space asymmetry momentum space anisotropy Space eccentricity Elliptic flow Observables Flows equilibrium time, EoS ….
23
A.Litvinenko VBLHEP JINR 23 Observables No hard collisions at small energy Fluctuations: Multiplicities, Particle Ratios, mean pT … Fluctuations from 1st order transition have to be more strong
24
A.Litvinenko VBLHEP JINR 24 General view of the MPD CD-central parts, (FS-A, FS-B) - two forward spectrometers (optional). Superconductor solenoid (SC Coil) and magnet yoke, inner detector (IT), straw-tube tracker (ECT), time-projection chamber (TPC), time-of-flight stop counters (TOF), electromagnetic calorimeter (ECal), fast forward detectors (FFD), beam-beam counter (BBC), and zero degree calorimeter(ZDC).
25
A.Litvinenko VBLHEP JINR 25 Central Detector of MPD with based dimensions
26
A.Litvinenko VBLHEP JINR 26 MPD pseudorapidity coverage. The barrel part The endcaps (FS-A and FS-B)
27
A.Litvinenko VBLHEP JINR 27 Magnet of MPD Distribution of the magnetic induction The field inhomogeneity in the tracker area of the detector is about 0.1%.
28
A.Litvinenko VBLHEP JINR 28 Detector simulation software packages The software framework for the MPD experiment (MpdRoot) is based on the object oriented framework FairRoot and provides a powerful tool for detector performance studies, development of algorithms for reconstruction and physics analysis of the data. http://mpd.jinr.ru
29
A.Litvinenko VBLHEP JINR 29 Time projection chamber (TPC) Schematic view (tracking, PID)
30
A.Litvinenko VBLHEP JINR 30 Time projection chamber (TPC) Simulation view of TPC in the MpdRoot.
31
A.Litvinenko VBLHEP JINR 31 Time projection chamber (TPC) Tracks reconstruction Charge particle tracks in the TPC volume for a central Au + Au collision UrQMD 2.3
32
A.Litvinenko VBLHEP JINR 32 Time projection chamber (TPC) Particle identification Separation of particles in the TPC by ionization loss
33
A.Litvinenko VBLHEP JINR 33 Inner Tracker System (vertex reconstruction, secondary vertex reconstruction)
34
A.Litvinenko VBLHEP JINR 34 Hyperons identification Inner Tracker System TPC TPC + ITS
35
A.Litvinenko VBLHEP JINR 35 Time of Flight System (ToF) PID (0.1–2 GeV/c) – ToF + TPC Multigap Resistive Plate Counters (MRPC) Barrel of TOF system Distribution of RPC elements in the barrel
36
A.Litvinenko VBLHEP JINR 36 Time of Flight System (ToF) PID with TOF and TPC
37
A.Litvinenko VBLHEP JINR 37 Electromagnetic calorimeter The “shashlyk” type calorimeter Detector sector sampling Pb(0.5 mm) + Sc(1.5 mm) (170 layers) ECAL detector. the “shashlyk” calorimeter module
38
A.Litvinenko VBLHEP JINR 38 Electromagnetic probes provide information about: Early stage of collision Temperature evolution of the system from its formation to thermal freez- out Comparison of resonanses properties as seen in dielectron and hadronic decay channels in Au+Au collisions
39
A.Litvinenko VBLHEP JINR 39
40
A.Litvinenko VBLHEP JINR 40
41
A.Litvinenko VBLHEP JINR 41 The importance of the centrality classification elliptic flow scaling with space eccentricity short equlibration time Space eccentricity Elliptic flow Nuclear Physics A V757, No. 1-2, p.184,2005
42
A.Litvinenko VBLHEP JINR 42 LAQGSM, Sqrt(S)=5 GeV Total kinetic energy of all nucleons and fragments directed to ZDC URQMD, Sqrt(S)=5 GeV
43
A.Litvinenko VBLHEP JINR 43 The centrality determination: ZDC + number tracks in TPC
44
Reaction plane peconstruction44 Position of extZDC within MPD set-up extZDC
45
Reaction plane peconstruction45 Methods of reaction plane reconstruction Method 1: Method 2: Using 1-st Fourier harmonics → directed flow in a collision in Lab frame: → combine measurements for η 0 to improve precision, study as a function of impact parameter b → Optimize weight w i to increase sensitivity to RP b φRφR
46
Reaction plane peconstruction46 Directed Flow v 1 vs Rapidity y UrQMDQGSM nucleonsπ-mesons
47
Reaction plane peconstruction47 Extended ZDC detector Simulation of extended ZDC within mpdroot: L = 120 (60, 40) cm 5 < R < 61 cm, z 0 =270 cm, 1<θ<12.5 o (2.2< η<4.8) d cell = 5x5,10x10 cm w i =Σ E vis in active layers of 1 module → use methods 1 and 2 for RP reconstruction No π vs p/ion identification Geant 4, QGSP_BIC physics model d cell = 5x5 cm, 420 cells in each side of MPD d cell = 10x10 cm, 121 cells in each side of MPD
48
Reaction plane reconstruction48 Resolution δφ RP and vs b Effects of ZDC cell size and length, beam energy and interaction model
49
A.Litvinenko VBLHEP JINR 49 Polarization observables at MPD. one example Analyzing powers Ayy of the reactions: = + S waveD wave
50
A.Litvinenko VBLHEP JINR 50 Experimental data C.E.Allgower et al., Phys.Rev. D 65,092008, (2002) Simulation for MPD
51
A.Litvinenko VBLHEP JINR 51 Experimental data C.E.Allgower et al., Phys.Rev. D 65,092008, (2002) (22 GeV) Simulation for MPD D.L. Adams et al., Phys. Lett. B 264, 462 (1991) 200 GeV
52
A.Litvinenko VBLHEP JINR 52 MPD Collaboration Joint Institute for Nuclear Research Kh.U.Abraamyan, S.V.Afanasiev, V.S.Alfeev, N.Anfimov, D.Arkhipkin, P.Zh.Aslanyan, A.V.Averyanov, V.A.Babkin, S.N.Bazylev, D.Blaschke, D.N.Bogoslovsky, I.V.Boguslavski, A.V.Butenko, V.V.Chalyshev, S.P.Chernenko, Vl.F.Chepurnov, l.F.Chepurnov, G.A.Cheremukhina, I.E.Chirikov-Zorin, D.E.Donetz, K.Davkov, V.Davkov, D.K.Dryablov, D.Drnojan, V.B.Dunin, L.G.Efimov, A.A.Efremov, E.Egorov, D.D.Emelyanov, O.V.Fateev, Yu.I.Fedotov, A.V.Friesen, O.P.Gavrischuk, K.V.Gertsenberger, V.M.Golovatyuk, I.N.Goncharov, N.V.Gorbunov, Yu.A.Gornushkin, N.Grigalashvili, A.V.Guskov, A.Yu.Isupov, V.N.Jejer, M.G.Kadykov, M.Kapishin, A.O.Kechechyan, V.D.Kekelidze, G.D.Kekelidze, H.G.Khodzhibagiyan, Yu.T.Kiryushin, V.I.Kolesnikov, A.M.Korotkova, A.D.Kovalenko, N.D.Krahotin, Z.V.Krumshtein, N.A.Kuz’min, R.Lednicky, A.G.Litvinenko, E.I.Litvinenko, Yu.Yu.Lobanov, S.P.Lobastov, V.M.Lysan, L.Lytkin, J.Lukstins, V.M.Lucenko, D.T.Madigozhin, A.I.Malakhov, I.N.Meshkov, V.V.Mialkovski, I.I.Migulina, N.A.Molokanova, S.A.Movchan, Yu.A.Murin, G.J.Musulmanbekov, D.Nikitin, V.A.Nikitin, A.G.Olshevski, V.F.Peresedov, D.V.Peshekhonov, V.D.Peshekhonov, I.A.Polenkevich, Yu.K.Potrebenikov, V.S.Pronskikh, A.M.Raportirenko, S.V.Razin, O.V.Rogachevsky, A.B.Sadovsky, Z.Sadygov, R.A.Salmin, A.A.Savenkov,W.Scheinast, S.V.Sergeev, B.G.Shchinov, A.V.Shabunov, A.O.Sidorin, I.V.Slepnev, V.M.Slepnev, I.P.Slepov, A.S.Sorin, O.V.Teryaev, V.V.Tichomirov, V.D.Toneev, N.D.Topilin, G.V.Trubnikov, I.A.Tyapkin, N.M.Vladimirova, A.S.Vodop’yanov, S.V.Volgin, A.S.Yukaev, V.I.Yurevich, Yu.V.Zanevsky, A.I.Zinchenko, V.N.Zrjuev, Yu.R.Zulkarneeva
53
A.Litvinenko VBLHEP JINR 53 MPD Collaboration Institute for Nuclear Research, RAS, RF V.A.Matveev, M.B.Golubeva, F.F.Guber, A.P.Ivashkin, L.V.Kravchuck, A.B.Kurepin,.L.Karavicheva, A.I.Maevskaya, A.I.Reshetin, E.A.Usenko Skobeltsyn Institute of Nuclear Physics Moscow State University E.E.Boos, V.L.Korotkikh, I.P.Lokhtin, L.V.Malinina, M.M.Merkin, S.V.Petrushanko, L.I.Sarycheva, A.M.Snigirev, A.G.Voronin Institute for Theoretical Experimental Physics, Moscow, Russia O.A.Denisovskaia, K.R.Mikhailov, P.A.Polozov, M.S.Prokudin, G.B.Sharkov, A.V.Stavinskiy, V.L.Stolin, S.S.Tolstoukhov St.Petersburg State University S.Igolkin, G.Feofilov, V.Zherebchevskiy, V.Lazarev Institute for Nuclear Reseach & Nuclear Energy BAS, Sofia, Bulgaria I.Stamenov, I.Geshkov Institute for Scintillation Materials, Kharkov, Ukraine D.A.Bliznyuk, B.V.Grinyov, P.N.Zhmurin
54
A.Litvinenko VBLHEP JINR 54 MPD Collaboration State Enterprise Scientific & Technology Research Institute for Apparatus construction, Kharkov, Ukraine V.N.Borshchov, O.M.Listratenko, M.A.Protsenko, I.T.Tymchuk Particle Physics Center of Belarusian State University N.M.Shumeiko, F.Zazulia Department of Engineering Physics, Tsinghua University, Beijing, China Cheng Li, Hongfang Chen, Ming Shao, Xiaoliang Wang, Yongjie Sun, Zebo Tang Physics Institute Az.AS, Azerbaidjan O.Abdinov, M.Suleimanov ”Neva-Magnet” S&E, ltd, St-Petersburg, Russia T.K.Koshurnikov "HORIA HULUBEI National Institute of R&D for Physics and Nuclear Engineering", IFIN-HH, Bucharest, ROMANIA M.Apostol, F.Constantin, I.Cruceru, M.Cruceru
55
A.Litvinenko VBLHEP JINR 55 Conclusuions II Simulations and R&D are in a progress There is a big collaboration around the MPD project ZDC, ECAL and ToF prototypes are ready for the beam test Welcome to MPD Collaboration
56
A.Litvinenko VBLHEP JINR 56 Thank you
57
A.Litvinenko VBLHEP JINR 57 Backup slides
58
A.Litvinenko VBLHEP JINR 58
59
A.Litvinenko VBLHEP JINR 59 A conceptual design of the Multi-Purpose Detector to be built for the heavy-ion experimental program at JINR (Dubna) has been briefly described. The MPD comprises a tracking system based on TPC and ITS built of double-sided silicon microstrip detectors. Identification of charged hadrons is performed by a time-of-flight system based on mRPC technology; electrons and gammas are detected by a shashlyk-type electromagnetic calorimeter.
60
A.Litvinenko VBLHEP JINR 60 NICA Physics. Electromagnetic probes (dileptons) 60 Changes of the particle properties (broadening of spectral functions) in hot and dense medium. NICA is well situated to study in-medium effects due to highest baryon densities. 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Ratio 0.0 0.2 0.4 0.6 0.8 1.0 m ee (GeV/c 2 ) PLB 666 (2008) 425 HSD model : ratio of modified by medium to free di-electron spectra Energy range (NICA): Onset of the low-mass pair enhancement. Study the effect under highest baryon density conditions
61
A.Litvinenko VBLHEP JINR 61 Lattice QCD F. Karsch, Lecture Notes in Physics 583 (2002) 209. RHIC Energy Small baryon density
62
A.Litvinenko VBLHEP JINR 62 For
63
A.Litvinenko VBLHEP JINR 63 Rough estimation – ideal mass less gas Bosons -- 1- degree of freedom: Fermions -- 1- degree of freedom: 2 quarks 3 quarks
64
A.Litvinenko VBLHEP JINR 64 Why the collisions of heavy nuclei are interesting? Let us see on the space–time picture of collision pre-collisionQGP (?) and parton production hadron production hadron reinteraction QCD phase diagram
65
A.Litvinenko VBLHEP JINR 65 Observables Correlation Femtoscopy (HBT) space-time characteristics Weak energy dependence centrality 0-5%
66
A.Litvinenko VBLHEP JINR 66 Observables No hard collisions at small energy Hard processes ( Jet Quenching, resonances melting) Fluctuations:Multiplicities, Particle Ratios, mean pT … Fluctuations from 1st order transition have to be more stronge
67
A.Litvinenko VBLHEP JINR 67
68
A.Litvinenko VBLHEP JINR 68
69
A.Litvinenko VBLHEP JINR 69
70
A.Litvinenko VBLHEP JINR 70 Centrality determination in some experiment y=0 y=3 y>6 STAR PHENIX NA49 ZDC Only STARTPC only PHENIXBBC & ZDC
71
A.Litvinenko VBLHEP JINR 71 Observables and space time structure of Heavy ion collisions of Heavy ion collisions Production of hard particles: jets heavy quarks direct photons Calculable with the tools of perturbative QCD
72
A.Litvinenko VBLHEP JINR 72 Observables and space time structure of Heavy ion collisions of Heavy ion collisions Production of semi-hard particles: gluons, light quarks relatively small momentum: make up for most of the multilplicity
73
A.Litvinenko VBLHEP JINR 73 Observables and space time structure of Heavy ion collisions of Heavy ion collisions Thermalization experiment suggest a fast thermalization (remember elliptic flow) but this is still not undestood from QCD
74
A.Litvinenko VBLHEP JINR 74 Observables and space time structure of Heavy ion collisions of Heavy ion collisions Quark gluon plasma
75
A.Litvinenko VBLHEP JINR 75 Observables and space time structure of Heavy ion collisions of Heavy ion collisions Hot hadron gas
76
A.Litvinenko VBLHEP JINR 76 Particle ratio and statistical models These models reproduce the ratios of particle yields with only two parameters One assumes that particles are produced by a thermalized system with temperature T and baryon chemical potential The number of particles of mass m per unit volume is :
77
A.Litvinenko VBLHEP JINR 77 TIME = 0 fm/c,
78
A.Litvinenko VBLHEP JINR 78 TIME = 1 fm/c,
79
A.Litvinenko VBLHEP JINR 79 TIME = 2 fm/c,
80
A.Litvinenko VBLHEP JINR 80 TIME = 3 fm/c,
81
A.Litvinenko VBLHEP JINR 81 Alexander Kozlov QM’05 (For the PHENIX collaboration) Comparison of Φ meson properties as seen in dielectron and hadronic decay channels in Au+Au collisions by PHENIX at RHIC
82
A.Litvinenko VBLHEP JINR 82 Electron pairs. 82 PLB 666 (2008) 425
83
A.Litvinenko VBLHEP JINR 83 Electromagnetic calorimeter Neutrons in addition to electrons and Photons The efficiency of neutron registration as function of neutron kinetic energy. Relative resolution for neutron momentum
84
A.Litvinenko VBLHEP JINR 84 Baryon charge of fireball can be obtained from net-proton distribution Stopping power Net protons
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.