Presentation is loading. Please wait.

Presentation is loading. Please wait.

Electrospinning: the technique

Similar presentations


Presentation on theme: "Electrospinning: the technique"— Presentation transcript:

1 Electrospinning: the technique
Uni-axial stretching of a visco-elastic solution (polymeric) by the mean of electrostatic forces. The resultant nonwoven provide very porous arrangement where the pores are interrelated in the structure, with an overall high surface area compared to regular textiles. The fibers can also be reinforced with nanoparticles, conferring different characteristics to the final product.

2 Electrospinning: the technique
Jeong Moon Seo , Dr. Patricia A. Heiden, Dr. Michael E. Mullins, Dr. Susan E. Hill

3 Electrospinning set-up
Syringe Pump Grounded Collector Positive Tip + + + Power Supply Tip-Collector Distance (TCD) Voltage ІІІІІІІ

4 Electrospinning parameters
Polymeric solution High Voltage Polymer fibers (μm-nm) Temperature Humidity Air velocity Ambient parameters Viscosity Conductivity Surface Tension Electric Field Flow Rate Tip-Collector Distance Solution properties ES Conditions Fiber diameter Fiber diameter can be tuned by modifying different conditions

5 Why Electrospun fibers?
Superior surface area Controllable fiber surfaces, diameters, morphologies, structures, and functionalities Improved mechanical performance Diameters of fibers in the nano-order Continuous single nanofibers

6 Applications Electrospinning has recently received great attention in the fabrication of polymer nanofibers in a wide range of applications that demand high-performance materials for clothing, filtration, and biomedical materials. Other opportunities for electrospun fibers and ensuing structures include the fabrication of scaffolds for tissue engineering, in drug delivery, biosensors, and electronic and semi-conductive materials.

7 References Maria S. Peresin, Youssef Habibi, Justin O. Zoppe, Joel J. Pawlak, and Orlando J. Rojas “Nanofiber Composites of Polyvinyl Alcohol and Cellulose Nanocrystals: Manufacture and Characterization”. Biomacromolecules 2010, 11, 674–681 Justin O. Zoppe, Maria S. Peresin, Youssef Habibi, Richard A. Venditti, and Orlando J. Rojas “Reinforcing Poly(ε-caprolactone) Nanofibers with Cellulose Nanocrystals”. ACS Applied Materials and Interfaces , 1, 9, Jeong Moon Seo , Dr. Patricia A. Heiden, Dr. Michael E. Mullins, Dr. Susan E. Hill. University of Michigan, 2005 W.E. Teo, S. R., A review on electrospinning design and nonafibre assemblies. Nanotechnology 2006, 17, Bin Ding, H.-Y. K., Se-Chul Lee, Chang-Lu Shao, Douk-Rae Lee, Soo-Jin Park, Gyu-Beom Kwag, Kyung-Ju Choi, Preparation and Characterization of a Nanoscale Poly (vinyl alcohol) Fiber Aggregate Produced by an Electrospinning Method. Journal of Polymer Science: Part B: Polymer Physics 2002, 40, Bin Ding, H.-Y. K., Se-Chul Lee, Douk-Rae Lee, Kyung-Ju Choi, Preparation and characterization of a nanoscaled Poly(vinyl alcohol) fibers via electrospinning. Fibers and Polymers 2002, 3, (2), U.S. Sajeev, K. A. A., Deepthy Menon, Shanti Nair, Control of nanostructures in PVA, PVA/chitosan blends and PCL through electrospinning. Indian Academy of Science 2008, 31, (3), M.A.Samir; F. Alloin; Dufresne, A., Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 2005, 6,


Download ppt "Electrospinning: the technique"

Similar presentations


Ads by Google