Presentation is loading. Please wait.

Presentation is loading. Please wait.

GEOMETRIC OPERATIONS. Transformations and directions Affine (linear) transformations Translation, rotation and scaling Non linear (Warping transformations)

Similar presentations


Presentation on theme: "GEOMETRIC OPERATIONS. Transformations and directions Affine (linear) transformations Translation, rotation and scaling Non linear (Warping transformations)"— Presentation transcript:

1 GEOMETRIC OPERATIONS

2 Transformations and directions Affine (linear) transformations Translation, rotation and scaling Non linear (Warping transformations) source to target (coordinate for each input image pixel) I(x,y)  O(x´,y´) target to source (coordinate for each output image pixel) O(x,y)  I(x´,y´) BETTER, WHY?

3 Translation Target to source x´ = x -T x y´ = y -T y

4 Translation

5 Rotation Target to source x´ = x cos(  - y sin(  ) y´ = x sin(  + y cos(  )

6 Rotation

7 Scaling Target to source x´ = x / S x y´ = y / S y

8 Scaling

9 General affine equations Linear equations in general form x´ = ( x cos(  + y sin(  )) S x +T x = ( S x cos(  x + (S x sin(  )) y +T x = a 2 x + a 1 y + a 0 y´ = (-x sin(  + y cos(  )) S y +T y = (-S y sin(  x + (S y cos(  )) y + T y = b 2 x + b 1 y + b 0

10 Warping Increasing higher order terms increases accuracy x 2 y 2 x 3 y 3

11 Warping and reference points Warping transformed Original with 4 reference points

12 Number of reference points 3 for first order warping 6 for second order warping 10 for third order warping

13 Number of reference points Example: correction of a lense degradation by a third order equation x´= a 9 x 3 + a 8 y 3 + a 7 x 2 y + a 6 y 2 x + a 5 x 2 + a 4 y 2 + a 3 x + a 2 y + a 1 xy + a 0 y´= b 9 x 3 + b 8 y 3 + b 7 x 2 y + b 6 y 2 x + b 5 x 2 + b 4 y 2 + b 3 x + b 2 y +b 1 xy +b 0

14 Lens distortion filter

15 Curve bend filter

16 Sampling and resizing In downsizing, first low pass filtering to avoid aliasing (Nyquist theorem) Interpolation in resizing (up- and downsizing )

17 Low pass filtering and resizing

18 Group discussion Discuss the application areas of geometric operations

19 Interpolation methods Nearest neighbor Bilinear Bicubic

20 Interpolation Nearest neighbor * 5 6 4545 Address: 5.3, 4.4 Select pixel: column 5, row 4

21 Interpolation, Bilinear * 5 6 4545 a b c d Address: 5.3, 4.4 Weighted average of neighbour pixels: cd = (1-0.3)*c + 0.3 *d ab = (1-0.3)*a + 0.3 *b abcd= (1-0.4)ab + 0.4*cd abcd is the final pixel value

22 Interpolation, Bicubic Second order interpolation In 16*16 neighbourhood, sometimes 64*64 Optimizing moving images

23 Nearest neighbour and bilinear Nearest neighborBilinear

24 Anti-aliasing filter

25 Extra information abour geometric corrections in remote sensing http://www.geo- informatie.nl/courses/grs20306/ course/Schedule/Geometric- correction-RS-new.pdf


Download ppt "GEOMETRIC OPERATIONS. Transformations and directions Affine (linear) transformations Translation, rotation and scaling Non linear (Warping transformations)"

Similar presentations


Ads by Google