Download presentation
Presentation is loading. Please wait.
Published byBertram Mosley Modified over 9 years ago
1
Specifications for PSB Injection System Upgrade C. Bracco, J. Abelleira on behalf of BTP Acknowledgments: E. Benedetto, C. Carli, V. Dimov, L.M. Feliciano, V. Forte, G. Grawer, E.B. Holzer, A. Lombardi, B. Mikulec, F. Roncarolo, G. Rumolo, W. Weterings, F. Zocca
2
Outlines Optics and beam parameters at different systems KSW painting schemes Studies for foil and half-sector test Status- what is missing (for HW production) - issues? 10/11/20112Review on PSB 160 MeV H - Injection
3
Linac4 Optics 10/11/20113Review on PSB 160 MeV H - Injection Optics parameters at PSB injection: Case T,H (m) T,H T,V (m) T,V (m) D TH (m)D TH ’D TV (m)D TV ’ All matched (medium) 5.56.5e-53.79.6e-5-1.4000
4
Linac4 Optics 10/11/20114Review on PSB 160 MeV H - Injection Optics parameters at PSB injection: Case T,H (m) T,H T,V (m) T,V (m) D TH (m)D TH ’D TV (m)D TV ’ All matched (medium) 5.56.5e-53.79.6e-5-1.4000 < 25 mm < 50 mm 0.4
5
Linac4 Optics 10/11/20115Review on PSB 160 MeV H - Injection Optics parameters at PSB injection: Case T,H (m) T,H T,V (m) T,V (m) D TH (m)D TH ’D TV (m)D TV ’ All matched (medium) 5.56.5e-53.79.6e-5-1.4000 < 34 mm < 16 mm 0.4
6
Target D TV = D TV ’=0 For all optics (Ring 3) D TV = 0.25 m in Ring 1 A. Lombardi: https://edms.cern.ch/document/1391781/0.1https://edms.cern.ch/document/1391781/0.1 Linac4 Optics 10/11/2011Review on PSB 160 MeV H - Injection6
7
Target A. Lombardi: https://edms.cern.ch/document/1391781/0.1https://edms.cern.ch/document/1391781/0.1 Linac4 Optics 10/11/2011Review on PSB 160 MeV H - Injection7 Case T,H (m) T,H T,V (m) T,V (m) D TH (m)D TH ’ All matched (medium) 5.132.11e-14.972.54e-2-1.40 Zero disp. 5.132.11e-14.972.54e-200 D matched Small ’s 2.51-6.68e-22.02-9.37e-2-1.40 Zero dispersion Small ’s 2.51-6.68e-22.029.37e-200 D matched Large ’s 9.36-3.46e-27.013.62e-2-1.40 Zero dispersion Large ’s 9.36-3.46e-27.013.62e-200 Obtained D TV = D TV ’=0 For all optics (Ring 3) D TV = 0.25 m in Ring 1
8
Beam size at BI.DIS, horizontalsmallmediumlarge Beam beta maxm26.5031.4028.1 normalised emittancepi*mm*mrad4.00E-01 betagamma6.08E-01 beam size (4 envelope) mm1.67E+011.82E+011.72E+01 Beam Disp.m0.10 Max Dp/p4.00E-03 Maximum momentum displacementmm4.00E-01 r.m.s. orbit displacementmm2.00 Mechanical tolerancemm1.00 Max. beam envelopemm20.1021.5820.60<25 Beam size at BI.DIS, verticalsmallmediumlarge Beam beta maxm13.7020.6021.40 normalised emittancepi*mm*mrad4.00E-01 betagamma6.08E-01 beam size (4 envelope) mm1.20E+011.47E+011.50E+01 Beam Disp.m1.50E+00 Max Dp/p4.00E-03 Maximum momentum displacementmm6.00E+00 r.m.s. orbit displacementmm10.00 Mechanical tolerancemm1.00 Max. beam envelopemm29.031.732.0<50 10/11/20118Review on PSB 160 MeV H - Injection Linac4 Optics Matched Dispersion
9
Beam size at BI.SMV, horizontalsmallmediumlarge Beam beta maxm54.9042.228.9 normalised emittancepi*mm*mrad4.00E-01 betagamma6.08E-01 beam size (4 envelope) mm2.40E+012.11E+011.74E+01 Beam Disp.m1.00E-01 Max Dp/p4.00E-03 Maximum momentum displacementmm4.00E-01 r.m.s. orbit displacementmm2.00 Mechanical tolerancemm1.00 Max. beam envelopemm27.424.520.8<34 Beam size at BI.SMV, verticalsmallmediumlarge Beam beta maxm9.257.307.52 normalised emittancepi*mm*mrad4.00E-01 betagamma6.08E-01 beam size (4 envelope) mm9.87E+008.77E+008.90E+00 Beam Disp.m1.00E+00 Max Dp/p4.00E-03 Maximum momentum displacementmm4.00E+00 r.m.s. orbit displacementmm2.00 Mechanical tolerancemm1.00 Max. beam envelopemm16.915.815.9<16 10/11/20119Review on PSB 160 MeV H - Injection Linac4 Optics Matched Dispersion
10
Beam size at BI.SMV, horizontalsmallmediumlarge Beam beta maxm54.9042.228.9 normalised emittancepi*mm*mrad4.00E-01 betagamma6.08E-01 beam size (4 envelope) mm2.40E+012.11E+011.74E+01 Beam Disp.m1.00E-01 Max Dp/p4.00E-03 Maximum momentum displacementmm4.00E-01 r.m.s. orbit displacementmm2.00 Mechanical tolerancemm1.00 Max. beam envelopemm27.424.520.8<34 Beam size at BI.SMV, verticalsmallmediumlarge Beam beta maxm9.257.307.52 normalised emittancepi*mm*mrad4.00E-01 betagamma6.08E-01 beam size (4 envelope) mm9.87E+008.77E+008.90E+00 Beam Disp.m1.00E+00 Max Dp/p4.00E-03 Maximum momentum displacementmm4.00E+00 r.m.s. orbit displacementmm2.00 Mechanical tolerancemm1.00 Max. beam envelopemm16.915.815.9<16 10/11/201110Review on PSB 160 MeV H - Injection Linac4 Optics Matched Dispersion Ongoing studies: MADX calculations to define optics parameters along the BI-TL for all optics and rings (no Space Charge included!!) Ongoing studies: MADX calculations to define optics parameters along the BI-TL for all optics and rings (no Space Charge included!!)
11
Beam Envelope injection Region 10/11/201111Review on PSB 160 MeV H - Injection Matched Dispersion & Large Beta (LHC circulating Beam) s [mm] x [mm] BSW4 BSW3 BSW2 BSW1 injected beam H- H- H0 Dump Stripping foil Circulating beam
12
Beam Envelope injection Region 10/11/201112Review on PSB 160 MeV H - Injection s [mm] x [mm] BSW4 BSW3 BSW2 injected beam H- H- H0 Dump Stripping foil Matched Dispersion & Large Beta (LHC circulating Beam)
13
Beam Size at Dump 10/11/201113Review on PSB 160 MeV H - Injection Beam spot size (1 x,y ) and location of the H0 and H- beams at the H0/H- PSB dump in case of zero dispersion and/or no longitudinal painting smallest beam highest energy density: 1.8 mm x 1.4 mm (0.80% matched functions and 0 Dispersion) Small_beta optics in both planes: 1.3 mm x 1.2 mm 40% smaller spot size at the dump. Small vertical beta is not “interesting” from an operational point of view. More realistic option: x = 2.51 m and y = 4.97 m 1.3 mm x 1.8 mm
14
(for LHC beams even if Dx = -1.4 !) Full horizontal beam size Medium_betaSmall_betaLarge_beta D HT = -1.4 28.525.532.7 D HT = 0 16.113.220.3 Full vertical beam size Medium_betaSmall_betaLarge_beta 43.941.247.6 H 10 0.4 0.608 7.17 1.4 0.0044 6.16 1 2 ±16.3 32.7 V 8 0.4 0.608 6.412365 0.25 0.0044 6.4 1 10 ±23.8 47.6 Example Beam Size at Foil 10/11/2011Review on PSB 160 MeV H - Injection14 Beta [m] Normalised emittance [mm mrad] betagamma 98% beam size D [m] Max Dp/p Max momentum displacement [mm] Delivery precision [mm] Maximum offset for painting [mm] Max. injected beam envelope [mm] Full beam envelope [mm]
15
Painting with KSW Original design for KSW transverse painting 35 mm -9.2 mm (1/5 BSW bump) 1 ms I1I1 I2I2 t1t1 t2t2 Slope 1 Slope 2 t3t3 Slope 3 I max 10/11/2011Review on PSB 160 MeV H - Injection15 BI.KSW parameters corresponding to the nominal injection bump of -35 mm
16
KSW Envelope Specifications KSW Magnet Current LHC- small emittance beams High intensity – Large emittance Fastest decay Slowest decay G.Grawer Deviation from reference curve < 1% during injection Old values 10/11/2011Review on PSB 160 MeV H - Injection16 “Slope 1”: 10%-60% current decay in 5-30 s “Slope 2” plateau (1-2% variation) current decay in 10-70 s. High intensity – Large emittance
17
Foil Test 10/11/201117Review on PSB 160 MeV H - Injection Possible measurements: Stripping efficiency (degradation) Losses Emittance growth
18
Foil Test 10/11/201118Review on PSB 160 MeV H - Injection Possible measurements: Stripping efficiency (degradation) Losses Emittance growth B QD [T] Beam size at the foil V. Dimov
19
Stripping efficiency 10/11/201119Review on PSB 160 MeV H - Injection M. Aiba SEM grids out of the beam line avoid p+ production at wires BCTs resolution = 0.1 mA A difference of 0.4 mA between upstream and downstream of the 150 µg/cm 2 stripping foil is calculated while for thicknesses larger than 200 µg/cm 2 no measurable difference is expected (need accurate relative calibration) Continuous BCT monitoring to evaluate long term degradation foil lifetime. Possible test: 400 µs pulse and the minimum beam size at the foil (9T) (beam x2 bigger than at PSB injection) stripping foil degradation? N.B. SEM grids out!
20
Losses and Emittance Blowup Losses at the level of few 10 9 protons (for the nominal intensity of 10 14 H − from L4) are expected measurable (limit 10 pA) provided definition of optimum BLM location (tbc) Optics conditions close to the nominal L4 values at the PSB injection point, can be obtained by powering the quadrupole at 9 T/m. – Emittance blowup of 2-3%, both in the horizontal and vertical plane, is expected for a 200 µg/cm 2 foil and 4-5% for 300 µg/cm 2 hardly measurable! – A blow-up larger than 10% can be obtained only in the vertical plane with 2.5 T/m at the QD. 10/11/201120Review on PSB 160 MeV H - Injection
21
Half-Sector Test Define optics at the foil: achievable parameters, flexibility, etc. (MAD-X calculations without SC…) What do we expect to be able to measure Define responsibility… 10/11/201121Review on PSB 160 MeV H - Injection
22
Status- what is missing – issues? L4 people checked the BI-TL optics and apertures (Ring 3) OK! BI-TL apertures re-checked (Ring 3) by BTP for sensitive elements (DIS and SMV, data from A. Lombardi plus conservative assumptions) OK! BI-TL: MADX calculations (wo SC) are ongoing fully independent check of all optics for all 4 rings PSB injection region: beam size calculation at foil, beam dump & related diagnostics (stripping foil) OK! KSW: HW specifications frozen KSW waveform: – Limit conditions and envelope defined OK for generator production – Updated table with waveform for all users still missing! Foil test: – Preliminary estimates of beam parameters at foil and what can be measured – BLM position to be checked Half-sector test: – No study done yet (in BTP) – Define responsibility! 10/11/201122Review on PSB 160 MeV H - Injection
23
10/11/201123Review on PSB 160 MeV H - Injection Thank you!
24
10/11/201124Review on PSB 160 MeV H - Injection
25
PSB Users 10/11/201125Review on PSB 160 MeV H - Injection norm. Emittance [mm mrad] User Intensity/ring HV LHC25A/B2.96E+12**< 2 LHC BCMS1.48E+12**11 LHCPILOT5.00E+0911 LHCINDIV2.30E+10 / 1.35E+1122 SFTPRO6.00E+1286 AD4.00E+1286 TOF9.00E+1210 EASTA/B/C1.00E+11 / 4.50E+1131 NORMGPS NORMHRS 1.00E+13 2.50E+13 159 STAGISO3.50E+1284 CNGS-like6.00E+11 / 8.00E+12108 **G. Rumolo’s Tables https://edms.cern.ch/document/1296306/1
26
Beam envelope at the end of injection (KSW bump = -9.2 mm, BSW bump = 45.9 mm): Circulating beam injected beam H- H- H0 BSW4 Dump BSW3 BSW2 BSW1 Stripping foil x [ mm ] s [ m ] r.m.s norm. emitt. hor =9 mm mrad Negative KSW bump ISOLDE 10/11/2011Review on PSB 160 MeV H - Injection26
27
Injection over 40 turns (1e13 p+ per ring, 40 mA current from Linac4) Longitudinal painting Matched optics in beta and dispersion Initial vertical offset of 7.5 mm 100% I max 60% I max in 12 s (t1 = 12 s) 60% I max 59 % I max in 28 s (t2 = 40 s) 59% I max -26% I max in 15 s (t3 = 55 s) x [mm] y [mm] x [mm] y [mm] ISOLDE 10/11/2011Review on PSB 160 MeV H - Injection27
28
ISOLDE 100% I max 60% I max in 12 s (t1 = 12 s) 60% I max 59 % I max in 28 s (t2 = 40 s) 59% I max -26% I max in 15 s (t3 = 55 s) H- H0 BSW4 Dump BSW3 Stripping foil x [ mm ] s [ m ] Total: 1.1% beam lost 52% of losses occur when KSW ~constant Injection over 40 turns (1e13 p+ per ring, 40 mA current from Linac4) Longitudinal painting Matched optics in beta and dispersion Initial vertical offset of 7.5 mm 10/11/2011Review on PSB 160 MeV H - Injection28
29
Beam envelope at the end of injection (KSW bump = 0 mm, BSW bump = 45.9 mm): Circulating beam injected beam H- H- H0 BSW4 Dump BSW3 BSW2 BSW1 Stripping foil x [ mm ] s [ m ] ISOLDE r.m.s norm. emitt. hor =15 mm mrad 10/11/2011Review on PSB 160 MeV H - Injection29
30
30 100% I max 48% I max in 14 s (t1 = 14 s) 48% I max 47 % I max in 26 s (t2 = 40 s) 47% I max -26% I max in 15 s (t3 = 55 s) xx yy J.L. Abelleira X [mm] Total: 6.5% beam lost 10/11/2011Review on PSB 160 MeV H - Injection Work ongoing to find the best tradeoff between target intensity/emittance and losses minimization for all users! ISOLDE
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.