Presentation is loading. Please wait.

Presentation is loading. Please wait.

11 1 Backpropagation. 11 2 Multilayer Perceptron R – S 1 – S 2 – S 3 Network.

Similar presentations


Presentation on theme: "11 1 Backpropagation. 11 2 Multilayer Perceptron R – S 1 – S 2 – S 3 Network."— Presentation transcript:

1 11 1 Backpropagation

2 11 2 Multilayer Perceptron R – S 1 – S 2 – S 3 Network

3 11 3 Example

4 11 4 Elementary Decision Boundaries First Subnetwork First Boundary: Second Boundary:

5 11 5 Elementary Decision Boundaries Third Boundary: Fourth Boundary: Second Subnetwork

6 11 6 Total Network

7 11 7 Function Approximation Example Nominal Parameter Values

8 11 8 Nominal Response

9 11 9 Parameter Variations

10 11 10 Multilayer Network

11 11 Performance Index Training Set Mean Square Error Vector Case Approximate Mean Square Error (Single Sample) Approximate Steepest Descent

12 11 12 Chain Rule Example Application to Gradient Calculation

13 11 13 Gradient Calculation Sensitivity Gradient

14 11 14 Steepest Descent s m F ˆ  n m  ----------  F ˆ  n 1 m  --------- F ˆ  n 2 m  ---------  F ˆ  n S m m  ----------- = Next Step: Compute the Sensitivities (Backpropagation)

15 11 15 Jacobian Matrix F Ý m n m  f Ý m n 1 m  0  0 0f Ý m n 2 m  0  00  f Ý m n S m m  =

16 11 16 Backpropagation (Sensitivities) The sensitivities are computed by starting at the last layer, and then propagating backwards through the network to the first layer.

17 11 17 Initialization (Last Layer) a i  n i M  ---------- a i M  n i M  ---------- f M n i M  n i M  -----------------------f Ý M n i M  === s i M 2t i a i –  –f Ý M n i M  =

18 11 18 Summary Forward Propagation Backpropagation Weight Update

19 11 19 Example: Function Approximation 1-2-1 Network + - t a e p

20 11 20 Network 1-2-1 Network a p

21 11 21 Initial Conditions

22 11 22 Forward Propagation

23 11 23 Transfer Function Derivatives

24 11 24 Backpropagation

25 11 25 Weight Update

26 11 26 Choice of Architecture 1-3-1 Network i = 1i = 2 i = 4i = 8

27 11 27 Choice of Network Architecture 1-5-1 1-2-11-3-1 1-4-1

28 11 28 Convergence 1 2 3 4 5 0 1 2 3 4 5 0

29 11 29 Generalization 1-2-11-9-1


Download ppt "11 1 Backpropagation. 11 2 Multilayer Perceptron R – S 1 – S 2 – S 3 Network."

Similar presentations


Ads by Google