Presentation is loading. Please wait.

Presentation is loading. Please wait.

1) SIMPLIFY: 7 x 2 – 5 x – 3 + 2 x A) 7 x 2 + 3 x – 3 B) x 4 C) – 3 D) 7 x 2 – 3 x – 3.

Similar presentations


Presentation on theme: "1) SIMPLIFY: 7 x 2 – 5 x – 3 + 2 x A) 7 x 2 + 3 x – 3 B) x 4 C) – 3 D) 7 x 2 – 3 x – 3."— Presentation transcript:

1

2 1) SIMPLIFY: 7 x 2 – 5 x – 3 + 2 x A) 7 x 2 + 3 x – 3 B) x 4 C) – 3 D) 7 x 2 – 3 x – 3

3 2) SIMPLIFY: (- 3 c 3 d 4 )(5 c 5 d 2 ) A) - 15 c 15 d 8 B) - 15 c 8 d C) - 15 c 8 d 6 D) - 8 c 8 d 8

4 3) SIMPLIFY: A) B) C) D) - 15 x 2 y 3 z 3

5 4) SIMPLIFY: (6 b 2 c 3 ) 2 A) 12 b 4 c 6 B) 36 b 4 c 6 C) 12 b 4 c 5 D) 36 b 4 c 5

6 5) SIMPLIFY: A) B) C) D)

7 6) SIMPLIFY: A) B) C) D)

8 7) SIMPLIFY: A) B) C) D)

9 8) Find the perimeter of a triangle whose sides are (3 x 2 + 5); (5 x – 2); and (6 x 2 + 5 x). A) 9 x 2 + 10 x + 3 B) 19 x 2 + 3 C) 9 x 4 + 10 x 2 – 3 D) 7 x 4 + 10 x – 3

10 9) Simplify: (2 x + 5) (2 x – 3) A) 4 x 2 – 15 B) 4 x 2 – 4 x – 15 C) 4 x 2 + 4 x – 15 D) 8 x – 15

11 10) Simplify: (3 x 2 + 5 x + 1) – (7 x 2 – 2) A) - 4 x 2 + 5 x + 3 B) - 4 x 2 + 5 x – 1 C) x 2 – 1 D) x 2 + 3

12 11) Simplify: (x – 2) (3 x 2 – x + 4) A) 3 x 3 – 7 x 2 + 6 x – 8 B) 3 x 3 – 6 x 2 + 6 x + 4 C) 3 x 3 + 7 x 2 – 6 x – 8 D) 2 x 3 – 8

13 12) Find the perimeter of a rectangle if the width is (2 x – 4) and the length is (5 x + 1). A) 7 x – 3 B) 7 x + 3 C) 14 x – 6 D) 14 x + 6

14 13) Find the area of a triangle if the base is (2 x – 4) and the height is (x + 6). A) x 2 + 4 x – 12 B) 2 x 2 + 8 x – 24 C) 2 x 2 – 8 x – 24 D) 3 x + 2

15 14) SIMPLIFY: A) 2 x y – 3 + 4 x B) 2 y – 3 + 4 x C) 2 y – 3 + 4 y D) 2 x y – 3 + 4 x 2

16 15) SIMPLIFY: A) B) C) D)

17 16) SIMPLIFY: A) B) C) D)

18 17) The area of a rectangle is given by the expression: x 2 – 5 x – 6. The length and width have only integral coefficients. Which of the following could represent the length of the rectangle? A) x – 6B) x – 2 C) x – 3 D) x – 1

19 18) Given: 2 x – 3 y = 12 6 x + 2 y = 42 What is x + y? 2(2 x – 3 y = 12) 3(6 x + 2 y = 42) 4 x – 6 y = 24 18 x + 6 y = 126 22 x = 150 x = 150 / 22 = 75 / 11 2( 75 / 11 ) – 3 y = 12 150 / 11 – 3 y = 12 – 3 y = - 18 / 11 y = 6 / 11 x + y = 75 / 11 + 6 / 11 x + y = 81 / 11 = 7.4

20 19) A restaurant received 270 hamburger patties and 350 hotdogs on Monday for $ 450. On Friday the restaurant received 550 hamburger patties and 425 hotdogs for $ 630. a) How much did each hamburger cost? b) How much will 25 hamburgers and 50 hotdogs be? x = cost of a hamburger y = cost of a hotdog 270 x + 350 y = 450 550 x + 425 y = 630 cost of a hamburger = $.38 cost of a hotdog = $.995 25($.38) + 50($.995) = $ 59.25

21 20) A local pet store has triple the amount of fish as birds and has a total of 250 fish and birds. Write a system of equations represents the number of fish and birds using the variables F and B. F = number of fish B = number of birds F = 3 B F + B = 250 3 B + B = 250 4 B = 250 B = 62.5 F = 3(62.5) = 187.5 No solution since you cannot have a fraction of a bird or of a fish.

22 21) Given: 4 x + 3 y = 60 x – y = 10 What is the value of x ? x = y + 10 4(y + 10) + 3 y = 60 4 y + 40 + 3 y = 60 7 y + 40 = 60 7 y = 20 y = 20 / 7 = 2 6 / 7 = 2.86 x = 2 6 / 7 + 10 = 12 6 / 7 = 12.86

23 22) Given: 2 x + y = 15 5 x – 6 y = - 22 What is the value of x – y ? A) 11B) 2 C) 3 D) - 3 y = - 2 x + 15 5 x – 6(- 2 x + 15) = - 22 5 x + 12 x – 90 = - 22 17 x – 90 = - 22 17 x = 68 x = 4 y = - 2(4) + 15 y = - 8 + 15 y = 7 x – y = 4 – 7 = - 3

24 23) Given: w = 1 – v 2 v + w = 4 What is the value of w ? A) 3B) 2 C) 1 D) - 2 2 v + 1 – v = 4 v + 1 = 4 v = 3 w = 1 – v = 1 – 3 = - 2

25 24) A limosine company charges a flat-fee of $ 80 plus $.05 per mile. A shuttle van company charges a flat-fee of $ 60 plus $.50 per mile. Approximately what mileage will yield the same fare for both? A) 24 milesB) 34 miles C) 44 miles D) 54 miles limo: y =.05 x + 80 shuttle: y =.5 x + 60.05 x + 80 =.5 x + 60 5 x + 8000 = 50 x + 6000 2000 = 45 x 44.4 = x

26 25) The price of six sodas and four candy bars is $ 18.50. The price of two candy bars and eight sodas is $ 20.50. What is the price of a candy bar? A) $ 1.25B) $ 2.25 C) $ 1.65 D) $ 2.15 x = number of sodas y = number of candy bars 6 x + 4 y = 18.50 8 x + 2 y = 20.50 x = $ 2.25 y = $ 1.25

27 26) The area of a rectangle is given by the expression: x 2 – 5 x – 6. The length and width only have integral coefficients. Which of the following could represent the length of the rectangle? A) x – 6B) x – 3 C) x – 2 D) x – 1 (x – 6)(x + 1)

28 27)Factor: x 2 + 9 x + 18 28)Factor: x 2 – 13 x y – 30 y 2 (x + 6) (x + 3) (x – 3 y)(x – 10 y)

29 29)Factor: w 2 + 2 w – 15 30)Factor: x 3 + 5 x 2 + 6 x (w + 5) (w – 3) x(x 2 + 5 x + 6) x(x + 2)(x + 3)

30 31) A restaurant makes at least 50 pizzas a night, but no more than 250 pizzas. The restaurant makes at least 20 salads but no more than 90 salads. A total of no less than 325 pizzas and salads are made each night. Each pizza makes a profit of $ 3.00. Each salad makes a profit of $ 2.25. What is the maximum profit the restaurant can make in a night? A) $ 998.25B) $ 881.25 C) $ 907.50 D) $ 952.50 Constraints: 50 ≤ p ≤ 250 20 ≤ s ≤ 90 P(x, y) = 3 p + 2.25 s p + s ≥ 325

31 31) x > 50 x ≤ 250 y ≤ 90 y ≥ 50 x + y ≥ 325 Corner points: P 1 (235, 90) P 2 (250, 75) P 3 (250, 90) P(235, 90) = 3(235) + 2.25(90) = $ 672.50 P(250, 75) = 3(250) + 2.25(75) = $ 918.75 P(250, 90) = 3(250) + 2.25(90) = $ 952.50 HIGHEST PROFIT

32 32) SIMPLIFY: A) B) C) D)

33 33) SIMPLIFY:

34 34) Solve the following system of inequalities: 2 x + y < 3 x – 2 y ≤ 8 y < - 2 x + 3 y = - 2 x + 3 y ≥ ½ x – 4 y = ½ x – 4

35 34) Solve the following system of inequalities: 3 y ≥ 6 x – 9 3 x + 4 y < 12 y ≥ 2 x – 3 y = 2 x – 3 y < - ¾ x + 3 y = - ¾ x + 3


Download ppt "1) SIMPLIFY: 7 x 2 – 5 x – 3 + 2 x A) 7 x 2 + 3 x – 3 B) x 4 C) – 3 D) 7 x 2 – 3 x – 3."

Similar presentations


Ads by Google