Download presentation
Presentation is loading. Please wait.
Published byScott Dalton Modified over 9 years ago
1
Info Vis: Multi-Dimensional Data Chris North cs3724: HCI
2
Presentations jerome holman john gibson Vote: UI Hall of Fame/Shame?
3
Quiz Why visualization? Class motto:
4
Visualization Design Principles
5
Increase Data Density Calculate data/pixel “A pixel is a terrible thing to waste.”
6
Eliminate “Chart Junk” How much “ink” is used for non-data? Reclaim empty space (% screen empty) Attempt simplicity (e.g. am I using 3d just for coolness?)
7
Information Visualization Mantra Overview first, zoom and filter, then details on demand
8
InfoVis Design Principles Increase data density Eliminate “chart junk” Mantra: Overview first, zoom&filter, details on demand Insight factor Does the design reveal the data? Does the design help me explore, learn, understand? Show me the data!
9
Visualizing Multi-dimensional data
10
Multi-dimensional Data Table Attributes (aka: dimensions, fields, variables, columns, …) Items (aka: data points, records, tuples, rows, …) Data Values Data Types: Quantitative Ordinal Categorical/Nominal
11
Basic Visualization Model Data Visualization Visual Mapping Interaction
12
Visual Mapping 1.Map: data items visual marks Visual marks: Points Lines Areas Volumes
13
Visual Mapping 1.Map: data items visual marks 2.Map: data item attributes visual mark attributes Visual mark attributes: Position, x, y Size, length, area, volume Orientation, angle, slope Color, gray scale, texture Shape
14
Example Hard drives for sale: price ($), capacity (MB), quality rating (1-5) p c
15
Example: Spotfire Film database Year X Length Y Popularity size Subject color Award? shape
16
Ranking Visual Attributes 1.Position 2.Length 3.Angle, Slope 4.Size 5.Color Increased accuracy for quantitative data -W.S. Cleveland Color better for categorical data -J. Mackinlay
17
Basic Charts…
18
Factors in Visualization Design User tasks Data Data scale: # recs # attrs # possible data values
19
Data Scale # of attributes (dimensionality) # of items # of possible values (e.g. bits/value)
20
Spotfire Multiple views: brushing and linking Dynamic Queries Details window
21
TableLens (Eureka by Inxight) Visual encoding of cell values, sorting Details expand within context
22
Parallel Coordinates Bag cartesian orthogonal layout Parallel axes Data point = connected line segment (0, 1, -1, 2) = 0 x 0 y 0 z 0 w
23
Parallel Coordinates (XmdvTool)
24
Parallel Coordinates
25
Info. Vis. Topics Information types: Multi-dimensional: databases,… 1D, 2D, 3D Trees, Graphs Text, document collections Interaction strategies: Overview+Detail Focus+Context Zooming How (not) to lie with visualization
26
Homework #2: Info. Vis. Tools Get some data: Tabular, >=5 attributes (columns), >=500 items (rows) Use 2 visualization tools + Excel: Spotfire, TableLens, Parallel Coordinates Mcbryde 104c 2 page report: Discoveries in data Comparison of tools Due: Feb 19: A-K Feb 21: L-Z
27
Project 2: Java 3 students per team Ambitious project 0: form team (feb 14) 1: design(feb 28) 2: initial implementation(mid march) 3: final implementation (end march)
28
Next Presentations: proj1 design, UI critique Thurs: john randal, tom shultz Next Tues: mohamed hassoun, aaron dalton Next Thurs: nadine edwards, steve terhar
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.