Download presentation
Presentation is loading. Please wait.
Published byAngela Hunt Modified over 9 years ago
1
CAS-FEST 2010 © E. Maricau, K.U. Leuven 1 Computer Aided Analog Circuit Design for Reliability Elie Maricau and Georges Gielen ESAT–MICAS K.U.Leuven, Belgium emaricau@esat.kuleuven.be
2
CAS-FEST 2010 © E. Maricau, K.U. Leuven 2 Contents Introduction Reliability Effect Modeling Reliability Simulation Reliability-aware Design Conclusions
3
CAS-FEST 2010 © E. Maricau, K.U. Leuven 3 Towards Systems-on-Chip (SoC) Move to increased levels of integration reduced cost, size/volume, power improved performance Increasing chip complexity integrated heterogeneous systems mixed hardware/software mixed RF/analog/digital [Staszewski, ISSCC ‘08]
4
CAS-FEST 2010 © E. Maricau, K.U. Leuven 4 Scaling to atomistic scale devices… Nanometer CMOS scaling problems: Noise problems (signal integrity) Leakage (digital) Channel length modulation Velocity saturation Mobility degradation Drain induced barrier lowering (DIBL) Parasitic effects IC reliability … [ITRS 09]
5
CAS-FEST 2010 © E. Maricau, K.U. Leuven 5 IC Reliability … Spatial Unreliability manufacturing process variations random defects [Chandra IOLTS 09]
6
CAS-FEST 2010 © E. Maricau, K.U. Leuven 6 the IC manufacturing suffers from defects and from inherent fluctuations results in faulty chips and in fluctuations in circuit performances yield smaller than 100% affects profitability of IC manufacturing process Spatial Unreliability [Bernstein, IBM Journal 06]
7
CAS-FEST 2010 © E. Maricau, K.U. Leuven 7 IC Reliability … Spatial Unreliability manufacturing process variations random defects Dynamic Unreliability workload dependent temperature variations EMC [Chandra IOLTS 09]
8
CAS-FEST 2010 © E. Maricau, K.U. Leuven 8 Dynamic Unreliability Power, Voltage, Temperature variations EMC EOS ESD …
9
CAS-FEST 2010 © E. Maricau, K.U. Leuven 9 IC Reliability … Spatial Unreliability manufacturing process variations random defects Dynamic Unreliability workload dependent temperature variations EMC Temporal Unreliability ageing effects [Chandra IOLTS 09]
10
CAS-FEST 2010 © E. Maricau, K.U. Leuven 10 Temporal Unreliability IC level Electro migration Stress voiding Bias Temperature Instability (BTI) Hot Carrier Injection (HCI) Time Dependent Dielectric Breakdown (TDDB)... PCB Corrosion Solder cracking... Packaging Bond wire sheering...
11
CAS-FEST 2010 © E. Maricau, K.U. Leuven 11 Reliability Assessment Device Level Accelerated stress tests on individual devices Device failure criterion is chosen arbitrarily (e.g. V TH >50mV) Circuit Level Test for Reliability (TFR) » e.g. screening, life test, burn-in,… Design for Reliability (DFR) » Transistor aging models » Reliability simulation tools DFR TFR
12
CAS-FEST 2010 © E. Maricau, K.U. Leuven 12 Contents Introduction Reliability Effect Modeling Reliability Simulation Reliability-aware Design Conclusions
13
CAS-FEST 2010 © E. Maricau, K.U. Leuven 13 What do we need? Compact models for all important unreliability effects Include all important factors » e.g. W,L, Vgs, Vds, T, … Include interaction effects » e.g. Vds-Vgs for HCI Cover a broad range of factor values » e.g. Vgs = [0V … 1.5V], W=[0.08 m-10 m] Model time-varying stress effects » e.g. Vgs(t)= VGS + sin(0.5,1e6)
14
CAS-FEST 2010 © E. Maricau, K.U. Leuven 14 Reliability in Nanometer CMOS Process variability Hot Carrier Degradation NBTI (PBTI) Time Dependent Dielectric Breakdown n+n+ n+n+ [ITRS 2009]
15
CAS-FEST 2010 © E. Maricau, K.U. Leuven 15 Process Variability [Bernstein et al. IBM Journal 2006] Random dopant fluctuations Line edge roughness [Pelgrom, JSSC 89]
16
CAS-FEST 2010 © E. Maricau, K.U. Leuven 16 Hot Carrier Degradation channel hot carrier A well known phenomenon (>25 years) Interface traps due to impact ionization Dominant for NMOS in saturation » high V DS » high V GS Impact at device level » V TH, , g o n+n+ n+n+
17
CAS-FEST 2010 © E. Maricau, K.U. Leuven 17 Hot Carrier Degradation ESAT-MICAS model [Maricau ESREF08] Based on Reaction-Diffusion (RD) model Includes all important transistor parameters (Vgs, Vds, L, T) DC and AC voltage stress
18
CAS-FEST 2010 © E. Maricau, K.U. Leuven 18 Hot Carrier Degradation [Maricau ESREF08]
19
CAS-FEST 2010 © E. Maricau, K.U. Leuven 19 Negative Bias Temperature Instability new phenomenon (<5 years) important for pMOS traps due to electro-chemical reaction with SiH large V GS temperature activated relaxation phenomenon Interface traps: permanent part Oxide traps: recoverable part Impact at device level V TH, , g o p+p+ p+p+
20
CAS-FEST 2010 © E. Maricau, K.U. Leuven 20 Negative Bias Temperature Instability ESAT-MICAS model [Maricau EL10] Model permanent (P) and recoverable (R) component Includes important transistor parameters (Vgs, T) DC and AC voltage stress
21
CAS-FEST 2010 © E. Maricau, K.U. Leuven 21 Negative Bias Temperature Instability [Maricau EL10]
22
CAS-FEST 2010 © E. Maricau, K.U. Leuven 22 Time Dependent Dielectric Breakdown PMOS and NMOS Statistical phenomenon Gate current increases high V GS soft BD – I g noise hard BD – k gate resistance t SBD t HBD
23
CAS-FEST 2010 © E. Maricau, K.U. Leuven 23 Time Dependent Dielectric Breakdown Soft Breakdown 65nm technology Example SBD: » 1V gate stress » 10 year stress time Time to BD follows a Weibull distribution [Maricau DATE11]
24
CAS-FEST 2010 © E. Maricau, K.U. Leuven 24 Transistor Reliability in Sub 65nm CMOS [Gielen DATE11] Aging becomes worse EOT reduces » E eff increases New materials (High-k) » PBTI SiO2 Interfacial Layer » NBTI, HC, TDDB remains
25
CAS-FEST 2010 © E. Maricau, K.U. Leuven 25 Transistor Reliability in Sub 65nm CMOS Everything becomes stochastic NBTI PBTI Hot Carrier degradation Soft Breakdown Process variability [Huard, IRPS08]
26
CAS-FEST 2010 © E. Maricau, K.U. Leuven 26 Bias Temperature Instability [Gielen DATE11] Stochastic BTI model Individual charges can change V TH Poisson distribution for number of trapped charges (N=mean number of traps) Exponential distribution for the impact of an individual defect ( = average impact) V TH =f(Vgs,T) V TH )=f(1/(WL))
27
CAS-FEST 2010 © E. Maricau, K.U. Leuven 27 Transistor Model [Maricau, ESREF08, DATE11]
28
CAS-FEST 2010 © E. Maricau, K.U. Leuven 28 Contents Introduction Reliability Effect Modeling Reliability Simulation Reliability-aware Design Conclusions
29
CAS-FEST 2010 © E. Maricau, K.U. Leuven 29 Reliability Simulation IC Analysis: Performance(t)? Time-varying stress (Analog!) Gradual OP shift (iteration in software) Similar to ELDO and RelXpert [Maricau, DATE09, TCAD10]
30
CAS-FEST 2010 © E. Maricau, K.U. Leuven 30 Example: LC-VCO 5 GHz low phase noise High output swing High LC-tank Q-factor Protective gate-capacitors (DC-bias not shown) UMC 90nm
31
CAS-FEST 2010 © E. Maricau, K.U. Leuven 31 Nominal Simulation AC simulation shows sudden V out degradation (due to g o degradation) No frequency degradation Failure due to Hot Carrier damage
32
CAS-FEST 2010 © E. Maricau, K.U. Leuven 32 Variability awareness? Process variability introduces stress variability Transistor aging + process variability = yield(t) T fail,nom T fail,20 % [Maricau TCAD10]
33
CAS-FEST 2010 © E. Maricau, K.U. Leuven 33 Variability Aware Reliability Simulation Factor Space (Process Variability) Performance Space (Circuit Dependent) Yield (Application Dependent) Deterministic Reliability Simulation ?
34
CAS-FEST 2010 © E. Maricau, K.U. Leuven 34 Performance Space Exploration Option 1: Monte-Carlo Monte-Carlo loop around nominal reliability simulation Chi-square goodness-of-fit to find a good PDF at every time-point Accurate but very slow Option 2: Design of experiments (DoE) + Response Surface Model (RSM) Goal: faster while maintaining accuracy Means DoE: make every sample count! Monte-Carlo on RSM ?
35
CAS-FEST 2010 © E. Maricau, K.U. Leuven 35 Variability Aware Reliability Simulation Factor Space Exploration Screening Linear model Detect interactions Regression Interactions Weak non-linear effects Polynomial RSM Residual analysis Error estimation [Maricau DATE 10]
36
CAS-FEST 2010 © E. Maricau, K.U. Leuven 36 Stochastic Reliability Simulation Stochastic Unreliability Effects Breakdown BTI in sub 45 nm Technologies Circuit Aging Time-dependent transistor parameter shift » e.g. V TH =f(t) Time-dependent transistor parameter standard deviation » e.g. (V TH )=f(t)
37
CAS-FEST 2010 © E. Maricau, K.U. Leuven 37 Stochastic Reliability Simulation
38
CAS-FEST 2010 © E. Maricau, K.U. Leuven 38 Stochastic Reliability Simulation Treat aging effects as a time-dependent factor Spatial factors Time-dependent factors More factors means longer simulation time! Factor minimization based on sensitivity analysis [Maricau DATE 11]
39
CAS-FEST 2010 © E. Maricau, K.U. Leuven 39 Example: 65nm CMOS IDAC
40
CAS-FEST 2010 © E. Maricau, K.U. Leuven 40 Simple Current Mirror
41
CAS-FEST 2010 © E. Maricau, K.U. Leuven 41 Sensitivity Analysis Current Mirror 8 transistors + 2 resistors: 37 factors After sensitivity analysis: 25 factors
42
CAS-FEST 2010 © E. Maricau, K.U. Leuven 42 6-bit Current-Steering DAC Transimpedance amplifier Not sensitive to aging Current sources SBD effects cause time-dependent transistor mismatch
43
CAS-FEST 2010 © E. Maricau, K.U. Leuven 43 IDAC Simulation Results [Maricau DATE 11]
44
CAS-FEST 2010 © E. Maricau, K.U. Leuven 44 Contents Introduction Reliability Effect Modeling Reliability Simulation Reliability-aware Design Conclusions
45
CAS-FEST 2010 © E. Maricau, K.U. Leuven 45 Design for Failure Resilience Intrinsically robust circuits Worst-case overdesign to account for aging effects Consumes extra power and area Self-healing circuits adapt circuits at run-time to compensate for the degradation » reconfiguration or tuning of the circuit » digital calibration required performance is kept, although degradation is present Tools are needed to analyze the circuit at design time and to find adequate solutions!
46
CAS-FEST 2010 © E. Maricau, K.U. Leuven 46 Intrinsically Robust Circuits [Maricau DATE 10]
47
CAS-FEST 2010 © E. Maricau, K.U. Leuven 47 Self-healing Circuits Run-time adaptability adapt circuits at run-time to compensate for the degradation » reconfiguration or tuning of the circuit required performance is kept, although degradation is present concept of Knobs and Monitors:
48
CAS-FEST 2010 © E. Maricau, K.U. Leuven 48 Example: A High-Voltage Line Driver Output driver overview: Equivalent Model: [Serneels, ISSCC2007]
49
CAS-FEST 2010 © E. Maricau, K.U. Leuven 49 Example: A High-Voltage Line Driver Guarantee minimum efficiency Breakdown monitors [De Wit DRVW08]
50
CAS-FEST 2010 © E. Maricau, K.U. Leuven 50 Example: A High-Voltage Line Driver Measurements are ongoing (65nm CMOS)
51
CAS-FEST 2010 © E. Maricau, K.U. Leuven 51 Other Work Acar did something similar for a output driver [ISSCC 2008] Singh [Singh, CICC 2010], Karl [Karl, VLSI 2009] and Keane [Keane, JSSC 2010] proposed in-situ aging monitors for BTI, HCI and TDDB Industry DARPA: “Self-healing mixed signal integrated circuits (HEALICs)” project. [Karl ISSCC08]
52
CAS-FEST 2010 © E. Maricau, K.U. Leuven 52 Conclusions Spatial and temporal reliability are an issue in nanometer CMOS analog IC design Accurate modeling and efficient CAD tools are needed to assist the designer Design for reliability Increase design margins Solutions have been proposed Accurate transistor aging models for BTI, HC and TDDB effects Efficient Circuit Reliability Simulator methods Design solutions » Robust design » Self-healing circuits
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.