Download presentation
Presentation is loading. Please wait.
Published byClement Doyle Modified over 9 years ago
1
講者:許永昌 老師 1
2
Contents Completeness Bessel’s inequality Schwarz Inequality Summary 2
3
Completeness ( 請昱讀 P649~P651) 3 這裡內積不用 Dirac braket 是因為 已經定義 = (r r’) 了。 若通用,邏輯上會發生錯亂。 這裡內積不用 Dirac braket 是因為 已經定義 = (r r’) 了。 若通用,邏輯上會發生錯亂。
4
Completeness & Hilbert Space ( 請預讀 P650 & P658) 4 ~~~~~~~~~ ( 這很重要 ) If (x)=1, we can write If (x)=1, we can write
5
Completeness ( 請預讀 P883~P884) 5 在此,內積並不考慮 weight , 原因是 H m = m m 。
6
Bessel’s Inequality ( 請預讀 P651~P652) 6
7
Schwarz Inequality ( 請預讀 P652~P654) 7
8
Summary --- Vector space, Completeness ( 請預讀 P654~P658) (finite) Vector SpaceHilbert Space Basis: {e i } span the linear vector space { i } span the linear vector (function) space Vector space: {1.addition, 2.multiplication of a scalar (a, b, 0, 1, -1)} {1.commutative, 2.associative, 3.null vector and negative vector, 4. distributive} 1,1: f+g=g+f, 1,2: f+(g+h)=(f+g)+h, 1,3: f+0=f 12,4: a(f+g)=af+ag & (a+b)f=af+bf 2,1: af=fa 2,2: (ab)f=a(bf) 2,3: 0*f=0, 1*f=f, -1*f=-f. Complete: Inner product: c d= c i *d i. (f,g+ah)=(f,g)+a(f,h), (f,g)=(g,f)*. Orthogonality: e i e j =0 if i j i * j dx=0 if i j 8
9
Summary --- Vector space, Completeness (continue) (finite) Vector SpaceHilbert Space Norm: |c|=sqrt(c c) ||f||=(f,f) ½ Bessel’s inequality: c c |c i | 2. (f,f) |(f, i )| 2. Schwarz’ inequality: |c d| |c| |d| |(f,g)| 2 ||f|| ||g|| Infinite-dimensional linear vector space l 2 : c i =c e i. Required: |c i | 2 < . Infinite-dimensional linear vector (function) space L 2 : f i =( i,f). f= i ( i,f) : (almost everywhere) 9
10
Homework 10.4.1 (9.4.1e) 10.4.3 (9.4.3e) 10.4.9 (9.4.9e) 10.4.10 (9.4.10e) 10
11
Nouns 11
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.