Download presentation
Presentation is loading. Please wait.
Published byGordon Sims Modified over 9 years ago
1
Population Switching and Charge Sensing in Quantum Dots: A case for Quantum Phase Transitions Moshe Goldstein (Bar-Ilan Univ., Israel), Richard Berkovits (Bar-Ilan Univ., Israel), Yuval Gefen (Weizmann Inst., Israel) Support: Adams, BINA, GIF, ISF, Minerva, SPP 1285 PRL 104, 226805 (2010)
2
Outline Introduction Is population switching a QPT? Coulomb gas analysis A surprising twist: the effect of a charge sensor Extensions; spin effects
3
Quantum dots “0D” systems: – Semiconductor heterostructures– Metallic grains – Carbon buckyballs & nanotubes– Single molecules Realizations : –Artificial atoms –Single electron transistors
4
Quantum dots: A theorist’s view R L VgVg Traditional regimes: [Review: Alhassid, RMP ‘00] – Open dots, – Closed dots, Last decade: intermediate dot-lead coupling, –Interference (e.g., Fano) –Interactions (e.g., Kondo, population switching) : level spacing; level width
5
1 2 energy Level population (spinless) R L 2 1 1 2 2 1 VgVg VgVg n 1, n 2 +U , g Coulomb- blockade peak Coulomb- blockade valley 1122
6
VgVg n 1, n 2 +U 1 2 2 1 2 1 1 2 energy Population switching (spinless) R L [Baltin, Gefen, Hackenbroich & Weidenmüller ‘97, ‘99; Silvestrov & Imry ’00; … Sindel et al. ‘05 …]
7
Related phenomena Charge sensing by QPC [widely used] Phase lapses [Heiblum group: Yacoby et al. ‘95; Shuster et al. ‘97; Avinun-Kalish et al. ‘05] R L QD QPC –See also : MG, Berkovits, Gefen & Weidenmüller, PRB ‘09
8
Outline Introduction Is population switching a QPT? Coulomb gas analysis A surprising twist: the effect of a charge sensor Extensions; spin effects
9
Nature of the switching Is the switching abrupt? Yes ? (1 st order) quantum phase transition No ? continuous crossover (at T=0)
10
A limiting case Decoupled narrow level: [Silvestrov & Imry ‘00] –Switching is abrupt –A single-particle problem: not a QPT [Marcus group: Johnson et al. ‘04][Berkovits, von Oppen & Gefefn ‘05] free energy VgVg narrow level filled narrow level empty Many levels:
11
Nature of the switching Is the switching abrupt? Yes ? (1 st order) quantum phase transition No ? continuous crossover (at T=0, for a finite width narrow level)
12
Numerical results Hartree-Fock: Two solutions, switching still abrupt [Sindel et al. ’05, Golosov & Gefen `06, MG & Berkovits ‘07] FRG, NRG, DMRG: probably not [?] [Meden, von Delft, Oreg et al. ’07; MG & Berkovits, unpublished]
13
Outline Introduction Is population switching a QPT? Coulomb gas analysis A surprising twist: the effect of a charge sensor Extensions; spin effects
14
Basis transformation [Kim & Lee ’07, Kashcheyevs et al. ’07, Silvestrov & Imry ‘07] R L Electrostatic interaction Level widths: e.g., R L
15
Coulomb gas expansion (I) T: temperature; : short time cutoff; = |t| 2 level width One level & lead: Electron enters/exits Coulomb gas (CG) of alternating positive/negative charges [Anderson & Yuval ’69; Wiegmann & Finkelstein ’78; Matveev ’91; Kamenev & Gefen ’97] 1/T n 1 0 – –– + + + Fugacity
16
Coulomb gas expansion (II) R L Two levels & leads Two coupled CGs [Haldane ’78; Si & Kotliar ‘93] 1/T n 1, n 2 1 0 – – – + + + + + + + – – – –
17
Coulomb gas expansion (III) CG can be rewritten as: [Cardy ’81; Si & Kotliar ‘93] 1/T 0 00 10 01 11 10 00 01
18
RG analysis (I) Generically (no symmetries): 15 coupled RG equations [Cardy ’81; Si & Kotliar ‘93] 6 eqs. 3 eqs. 11 10 00 01
19
Solvable in Coulomb valley: Three stages of RG flow: RG analysis (II) 11 1001 00 (I) (II) (III) Result: an effective Kondo model [Kim & Lee ’07, Kashcheyevs et al. ’07, ‘09, Silvestrov & Imry ‘07]
20
Digression: The Kondo problem Realizations – Magnetic impurity – QD with odd electron number L Problem: divergences [Kondo ’64] – susceptibility: –Similarly: resistance, specific heat … Hamiltonian – J~t 2 /U>0: exchange – h z : local magnetic field D: bandwidth (spinful)
21
Kondo: CG analysis 1/T SzSz 1/2 0 – –– + + + –1/2 Anderson & Yuval [’69] : – Anisotropic model (J z ≠J xy ) – expand in J xy : Coulomb gas of spin-flips
22
Kondo: Phase diagram RG equations: Ferromagnetic Kondo: –impurity decoupled –susceptibility: ~c(J)/T+… Anti-Ferromagnetic Kondo: –impurity strongly-coupled –susceptibility: ~1/T K +… Kosterlitz- Thouless transition T K : Kondo temperature
23
Back to our problem … Pseudo-spin (orbital) Kondo – Anisotropic – V g changes effective level separation switching 11 1001 00 R L R L VgVg n R, n L LL L +U (spinless)
24
Implications population switching is continuous (scale: T K ) No quantum phase transition [Kim & Lee ’07, Kashcheyevs et al. ’07, ‘09, Silvestrov & Imry ‘07] Anti-Ferromagetic Kondo model Gate voltage magnetic field h z
25
What was gained? FDM Haldane on the Coulomb gas expansion: “Though an expression such as [the Coulomb gas expansion] … could be taken as the starting point of a scaling theory …, the more direct ‘poor man’s’ approach … proves simpler and more complete in practice.” [J. Phys. C 11, 5015 (1978)]
26
Outline Introduction Is population switching a QPT? Coulomb gas analysis A surprising twist: the effect of a charge sensor Extensions; spin effects
27
But … population switching is discontinuous : 1 st order quantum phase transition Adding a charge-sensor (Quantum Point Contact): –15 RG eqs. unchanged – Three-component charge R L QPC Kosterlitz- Thouless transition
28
Reminder: X-ray edge singularity Without interactions: ––– noninteracting 0 S( ) ––– Anderson ––– Mahan Anderson orthogonality catastrophe [’67] : Mahan exciton effect [’67] : energy e Absorption spectrum:
29
R L e e X-ray singularity physics (I) Virtual fluctuations:
30
X-ray singularity physics (I) Mahan exciton Anderson orthogonality J xy Scaling dimension: Mahan wins: Switching is continuous > vs. <1 relevant R L ee Electrons repelled/attracted to filled/empty dot (J z ):
31
X-ray singularity physics (II) Mahan exciton Anderson orthogonality J xy Scaling dimension: R L QPC ee e Anderson wins: Switching is abrupt <+ vs. + Extra orthogonality >1 irrelevant
32
A different perspective Detector constantly measures the level population Population dynamics suppressed: Quantum Zeno effect ! A sensor may induce a phase transition
33
Noninvasive charge sensing? continuous switching Use Friedel’s sum rule! abrupt switching LLLL LLLL R QPC L1L1 L2L2 VgVg n R, n L, g L LL L +U VgVg n R, n L, g L LL L +U R QPC L1L1 L2L2 K K [CIR: Meden & Marquardt ’06]
34
Perturbations First order transition switching smeared linearly in T, t LR 1.Finite T 2. Inter-dot hopping: R L QPC
35
Outline Introduction Is population switching a QPT? Coulomb gas analysis A surprising twist: the effect of a charge sensor Extensions; spin effects
36
Related models Bose-Fermi Kondo [Kamenev & Gefen ’97, Le Hur ’04, Borda et al. ’05, Florens et al. ’07, ‘08, …] 2-impurity Kondo with z exchange [Andrei et al. ’99, Garst et al. ‘94] R L F B
37
Extensions (I) – Mahan & Anderson –Repulsion continuous switching R L QPC Dot-lead interactions:
38
Extensions (II) Luttinger-liquid leads: –Repulsion abrupt switching R L QPC Luttinger-liquid & dot-lead interaction: – Edge singularity given by CFT & Bethe ansatz [Ludwig & Affleck ’94; MG, Weiss & Berkovits, EPL ‘09] –Many novel effects even for single level, single lead [MG, Weiss & Berkovits, PRB ’05, ’07, ’08; J. Phys. Conden. Matt. ‘07; Physica E ’10; PRL ‘10]
39
R L Luttinger liquid parameter: g=3/4 Soft boundary conditions: Switching in a Luttinger liquid (I) Density Matrix RG calculations:
40
W Switching in a Luttinger liquid (II) Finite size scaling:
41
Conclusions Population switching: –Usually: steep crossover, no quantum phase transition –Adding a charge sensor: 1 st order quantum phase transition Laboratory for various effects: – Anderson orthogonality, Mahan exciton, quantum Zeno effect, entanglement entropy; – Kondo
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.