Download presentation
Presentation is loading. Please wait.
Published byEmma Marcia Parker Modified over 9 years ago
1
Electron acceleration by Langmuir turbulence Peter H. Yoon U. Maryland, College Park
2
Outline Laboratory Beam-Plasma Experiments Beam-plasma instability & Langmuir turbulence Solar wind electrons Conclusions
3
LABORATORY BEAM-PLASMA EXPERIMENTS Part 1.
4
Alexeff et al., Hot-electron plasma by beam- plasma interaction, PRL, 10, 273 (1963). 5 keV DC electron beam interacting with plasma yields 250 keV X ray photons.
5
Tarumov et al., Investigation of a hydrogen plasma with “hot” electrons, Sov. Phys. JETP, 25, 31 (1967).
6
During the discharge phase the hot electron component was 1/10, which increased to 1/3 in the decay phase.
7
Levitskii and Shashurin, Spatial development of plasma-beam instability, Sov. Phys. JETP, 25, 227 (1967).
9
Whelan and Stenzel, Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system, Phys. Fluids, 28, 958 (1985).
11
Outline Laboratory Beam-Plasma Experiments Beam-plasma instability & Langmuir turbulence Solar wind electrons Conclusions
12
BEAM-PLASMA INSTABILITY AND LANGMUIR TURBULENCE Part 2.
13
Bump-in-tail instability Langmuir Turbulence generated by beam-plasma interaction
14
Langmuir oscillation Ion-sound wave
15
t x E(x,t)E(x,t)
16
t x E(x,t)E(x,t) Langmuir wave
18
1D approxiation Ions (protons) are taken as a quasi-steady state, and the electrons are made of two components, one background Gaussian distribution, and a tenuous beam component.
19
Backgroun d (thermal) electrons Beam electrons
22
T Umeda, private communications
24
Bump-in-tail instability
25
Beam-plasma or bump-in-tail instability
26
Bump-on-tail instability A.A. Vedenov, E. P. Velikhov, R. Z. Sagdeev, Nucl. Fusion 1, 82 (1961). W. E. Drummond and D. Pines, Nucl. Fusion Suppl. 3, 1049 (1962).
28
Bump-in-tail instability
29
Weak turbulence theory L. M. Gorbunov, V. V. Pustovalov, and V. P. Silin, Sov. Phys. JETP 20, 967 (1965) L. M. Al’tshul’ and V. I. Karpman, Sov Phys. JETP 20, 1043 (1965) L. M. Kovrizhnykh, Sov. Phys. JETP 21, 744 (1965) B. B. Kadomtsev, Plasma Turbulence (Academic Press, 1965) V. N. Tsytovich, Sov. Phys. USPEKHI 9, 805 (1967) V. N. Tsytovich, Nonlinear Effects in Plasma (Plenum Press, 1970) V. N. Tsytovich, Theory of Turbulent Plasma (Consultants Bureau, 1977) A. G. Sitenko, Fluctuations and Non-Linear Wave Interactions in Plasmas (Pergamon, 1982)
30
Backscattered L wave
33
~ g = 1/(n D 3 ) Discrete-particle (collisional) effect
34
Weak turbulence theory
37
P. H. Yoon, T. Rhee, and C.-M. Ryu, Self-consistent generation of superthermal electrons by beam-plasma interaction, PRL 95, 215003 (2005). Long-time behavior of bump-on-tail Langmuir instability
38
Outline Laboratory Beam-Plasma Experiments Beam-plasma instability & Langmuir turbulence Solar wind electrons Conclusions
39
SOLAR WIND ELECTRONS Part 3.
43
STEREO spacecraft
45
WIND spacecraft
46
2007 January 9 Linghua Wang, Robert P. Lin, Chadi Salem
47
By Linghua Wang, Davin Larsen, Robert Lin fe(v)fe(v) Electron Velocity Distribution
48
Outline Laboratory Beam-Plasma Experiments Beam-plasma instability & Langmuir turbulence Solar wind electrons Conclusions
49
CONCLUSIONS Part 4.
50
Beam-plasma interaction is a fundamental problem in plasma physics. Laboratory experiment shows electrons accelerated by beam-plasma interaction. Electron beam-excited Langmuir turbulence theory adequately explains the laboratory results and predict the formation of energetic tail distribution. Solar wind electrons feature energetic tail population confirming Langmuir turbulence acceleration theory.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.