Presentation is loading. Please wait.

Presentation is loading. Please wait.

2.5 – Continuity A continuous function is one that can be plotted without the plot being broken. Is the graph of f(x) a continuous function on the interval.

Similar presentations


Presentation on theme: "2.5 – Continuity A continuous function is one that can be plotted without the plot being broken. Is the graph of f(x) a continuous function on the interval."β€” Presentation transcript:

1 2.5 – Continuity A continuous function is one that can be plotted without the plot being broken. Is the graph of f(x) a continuous function on the interval [0, 4]? No At what values of x is the function discontinuous and why? π‘₯=1 π‘‡β„Žπ‘’π‘Ÿπ‘’ 𝑖𝑠 π‘Ž π‘—π‘’π‘šπ‘. π‘₯=2 π‘‡β„Žπ‘’π‘Ÿπ‘’ 𝑖𝑠 π‘Ž β„Žπ‘œπ‘™π‘’. π‘₯=4 π‘‡β„Žπ‘’π‘Ÿπ‘’ 𝑖𝑠 π‘Ž π‘—π‘’π‘šπ‘. Is the graph of f(x) continuous at π‘₯=3? Yes

2 What are the rules for continuity at a point?
lim π‘₯β†’ 3 βˆ’ 𝑓 π‘₯ = lim π‘₯β†’ 𝑓 π‘₯ = 2 2 lim π‘₯β†’3 𝑓 π‘₯ = 𝑓 3 = 2 2 lim π‘₯β†’ 1 βˆ’ 𝑓 π‘₯ = lim π‘₯β†’ 𝑓 π‘₯ = 1 lim π‘₯β†’1 𝑓 π‘₯ = 𝑓 1 = 𝐷𝑁𝐸 1 lim π‘₯β†’ 2 βˆ’ 𝑓 π‘₯ = 1 lim π‘₯β†’ 𝑓 π‘₯ = 1 lim π‘₯β†’2 𝑓 π‘₯ = 1 𝑓 2 = 2 What are the rules for continuity at a point? lim π‘₯β†’ 4 βˆ’ 𝑓 π‘₯ = 1 lim π‘₯β†’ 𝑓 π‘₯ = π‘›π‘œπ‘›π‘’ lim π‘₯β†’4 𝑓 π‘₯ = 𝑓 4 = π‘›π‘œπ‘›π‘’ 0.5

3 2.5 – Continuity

4 2.5 – Continuity   π‘₯=1 𝑓 1 =1 𝑓 𝑐 𝑒π‘₯𝑖𝑠𝑑𝑠 lim π‘₯→𝑐 𝑓 π‘₯ 𝑒π‘₯𝑖𝑠𝑑𝑠
𝑓 π‘₯ 𝑖𝑠 π‘›π‘œπ‘‘ π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘  π‘Žπ‘‘ π‘₯=1. ∴

5 2.5 – Continuity    π‘₯=2 𝑓 𝑐 𝑒π‘₯𝑖𝑠𝑑𝑠 𝑓 2 =2 lim π‘₯→𝑐 𝑓 π‘₯ 𝑒π‘₯𝑖𝑠𝑑𝑠
2β‰ 1 𝑓 π‘₯ 𝑖𝑠 π‘›π‘œπ‘‘ π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘  π‘Žπ‘‘ π‘₯=2. ∴

6 2.5 – Continuity    π‘₯=3 𝑓 𝑐 𝑒π‘₯𝑖𝑠𝑑𝑠 𝑓 2 =2 lim π‘₯→𝑐 𝑓 π‘₯ 𝑒π‘₯𝑖𝑠𝑑𝑠
2=2 𝑓 π‘₯ 𝑖𝑠 π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘  π‘Žπ‘‘ π‘₯=3. ∴

7 2.5 – Continuity    π‘₯=0 (left end point) 𝑓 𝑐 𝑒π‘₯𝑖𝑠𝑑𝑠 𝑓 0 =1
lim π‘₯β†’ 𝑐 + 𝑓 π‘₯ 𝑒π‘₯𝑖𝑠𝑑𝑠 lim π‘₯β†’ 𝑓 π‘₯ =1  lim π‘₯β†’ 𝑐 + 𝑓 π‘₯ =𝑓(𝑐) 1=1 ∴ 𝑓 π‘₯ 𝑖𝑠 π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘  π‘Žπ‘‘ π‘‘β„Žπ‘’ 𝑙𝑒𝑓𝑑 π‘’π‘›π‘‘π‘π‘œπ‘–π‘›π‘‘, π‘₯=0.

8 2.5 – Continuity    π‘₯=4 (right end point) 𝑓 𝑐 𝑒π‘₯𝑖𝑠𝑑𝑠 𝑓 4 =0.5
lim π‘₯β†’ 𝑐 βˆ’ 𝑓 π‘₯ 𝑒π‘₯𝑖𝑠𝑑𝑠 lim π‘₯β†’ 4 βˆ’ 𝑓 π‘₯ =1  lim π‘₯β†’ 𝑐 + 𝑓 π‘₯ =𝑓(𝑐) 0.5β‰ 1 ∴ 𝑓 π‘₯ 𝑖𝑠 π‘›π‘œπ‘‘ π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘  π‘Žπ‘‘ π‘‘β„Žπ‘’ π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘’π‘›π‘‘π‘π‘œπ‘–π‘›π‘‘, π‘₯=4.

9 Removable Discontinuity
Removable discontinuity occurs at a point where the function has a hole but does not have a function value. πΆπ‘Ÿπ‘’π‘Žπ‘‘π‘’ π‘Ž π‘ π‘–π‘šπ‘–π‘™π‘Žπ‘Ÿ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›, 𝑔 π‘₯ , π‘‘β„Žπ‘Žπ‘‘ 𝑖𝑠 π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘  π‘Žπ‘‘ π‘₯=2. lim π‘₯β†’2 𝑔 π‘₯ 𝑒π‘₯𝑖𝑠𝑑𝑠 lim π‘₯β†’2 𝑔 π‘₯ =1 lim π‘₯β†’2 𝑔 π‘₯ =𝑔(2) 1=1 ο‚· 𝑔 2 𝑒π‘₯𝑖𝑠𝑑𝑠 𝑔 2 =1 𝑔(π‘₯) 𝑖𝑓 π‘₯β‰ 2 1 𝑖𝑓 π‘₯=2 𝑔 π‘₯ = 𝑓 π‘₯ 𝑖𝑠 π‘‘π‘–π‘ π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘  π‘Žπ‘‘ π‘₯=2 𝐴 β„Žπ‘œπ‘™π‘’ 𝑒π‘₯𝑖𝑠𝑑 π‘Žπ‘‘ π‘₯=2. 𝑔 π‘₯ 𝑖𝑠 π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘  π‘Žπ‘‘ π‘₯=2. π‘…π‘’π‘šπ‘œπ‘£π‘Žπ‘π‘™π‘’ π‘‘π‘–π‘ π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘–π‘‘π‘¦ π‘Žπ‘‘ π‘₯=2.

10 Removable Discontinuity
Removable discontinuity occurs at a point where the function has a hole but does not have a function value. πΆπ‘Ÿπ‘’π‘Žπ‘‘π‘’ π‘Ž π‘ π‘–π‘šπ‘–π‘™π‘Žπ‘Ÿ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›, 𝑔 π‘₯ , π‘‘β„Žπ‘Žπ‘‘ 𝑖𝑠 π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘  π‘Žπ‘‘ π‘₯=3. 𝑓(π‘₯) lim π‘₯β†’3 𝑔 π‘₯ 𝑒π‘₯𝑖𝑠𝑑𝑠 lim π‘₯β†’3 𝑔 π‘₯ =0 ο‚· lim π‘₯β†’3 𝑔 π‘₯ =𝑔(3) 0=0 𝑔 3 𝑒π‘₯𝑖𝑠𝑑𝑠 𝑔 3 =0 𝑓 π‘₯ 𝑖𝑠 π‘‘π‘–π‘ π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘  π‘Žπ‘‘ π‘₯=3 𝑔(π‘₯) 𝑖𝑓 π‘₯β‰ 3 0 𝑖𝑓 π‘₯=3 𝑔 π‘₯ = 𝐴 β„Žπ‘œπ‘™π‘’ 𝑒π‘₯𝑖𝑠𝑑 π‘Žπ‘‘ π‘₯=3. 𝑔 π‘₯ 𝑖𝑠 π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘  π‘Žπ‘‘ π‘₯=3. π‘…π‘’π‘šπ‘œπ‘£π‘Žπ‘π‘™π‘’ π‘‘π‘–π‘ π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘–π‘‘π‘¦ π‘Žπ‘‘ π‘₯=3.

11 Removable Discontinuity
Example: The given function is discontinuous. Where is it discontinuous and is it removable? 𝑓 π‘₯ = π‘₯ 2 βˆ’4 π‘₯βˆ’2 π‘₯βˆ’2=0 π‘₯=2 𝑓(π‘₯) 𝑖𝑠 π‘‘π‘–π‘ π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘  π‘Žπ‘‘ π‘₯=2 𝑓 π‘₯ = π‘₯βˆ’2 π‘₯+2 π‘₯βˆ’2 π‘‡β„Žπ‘’ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ π‘₯βˆ’2 π‘π‘Žπ‘›π‘π‘’π‘™π‘ . π‘‡β„Žπ‘’π‘Ÿπ‘’ 𝑖𝑠 π‘Ž β„Žπ‘œπ‘™π‘’ π‘Žπ‘‘ π‘₯=2. 𝐼𝑑 𝑖𝑠 π‘Ÿπ‘’π‘šπ‘œπ‘£π‘Žπ‘π‘™π‘’ π‘Žπ‘‘ π‘₯=2.

12 Removable Discontinuity
Example: The given function is discontinuous. Where is it discontinuous and is it removable? 𝑓 π‘₯ =π‘‘π‘Žπ‘› πœ‹ 2 π‘₯ πœ‹ 2 π‘₯= πœ‹ 2 , 3πœ‹ 2 , 5πœ‹ 2 , β‹― π‘₯=1, 3, 5, 7, β‹― 𝑓 π‘₯ = 𝑠𝑖𝑛 πœ‹ 2 π‘₯ π‘π‘œπ‘  πœ‹ 2 π‘₯ 𝑓 π‘₯ 𝑖𝑠 π‘‘π‘–π‘ π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘  π‘Žπ‘‘ π‘₯=1,3, 5, 7, β‹― 𝑓 π‘₯ = 𝑠𝑖𝑛 πœ‹ 2 π‘₯ π‘π‘œπ‘  πœ‹ 2 π‘₯ π‘π‘œπ‘  πœ‹ 2 π‘₯ =0 π‘‡β„Žπ‘’ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ π‘π‘œπ‘  πœ‹ 2 π‘₯ π‘‘π‘œπ‘’π‘  π‘›π‘œπ‘‘ π‘π‘Žπ‘›π‘π‘’π‘™. 𝑙𝑒𝑑 πœƒ= πœ‹ 2 π‘₯ π‘π‘œπ‘ πœƒ=0 π‘‡β„Žπ‘’π‘Ÿπ‘’ 𝑖𝑠 π‘›π‘œ π‘Ÿπ‘’π‘šπ‘œπ‘£π‘Žπ‘π‘™π‘’ π‘‘π‘–π‘ π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘–π‘‘π‘¦ π‘“π‘œπ‘Ÿ 𝑓(π‘₯) πœƒ= πœ‹ 2 , 3πœ‹ 2 , 5πœ‹ 2 , β‹―

13 Removable Discontinuity
Examples

14 2.5 – Continuity 𝑓 π‘₯ =2 π‘₯ 3 βˆ’16 π‘₯ 2 +38π‘₯βˆ’22 1,5
𝑓 π‘₯ =2 π‘₯ 3 βˆ’16 π‘₯ 2 +38π‘₯βˆ’ ,5 𝑓 π‘₯ 𝑖𝑠 π‘Ž π‘π‘œπ‘™π‘¦π‘›π‘œπ‘›π‘šπ‘–π‘Žπ‘™ βˆ΄π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘  𝑓 1 = 2 𝑓 5 = 18 𝑓 π‘₯ =8 8=2 π‘₯ 3 βˆ’16 π‘₯ 2 +38π‘₯βˆ’22 π‘₯=4.547

15 2.6 – Limits Involving Infinity; Asymptotes of Graphs
𝐴𝑠 π‘₯β†’ 0 + , π‘¦β†’βˆž lim π‘₯β†’ 𝑓 π‘₯ =∞ 𝐴𝑠 π‘₯β†’βˆ’βˆž, 𝑦→0 𝐴𝑠 π‘₯β†’βˆž, 𝑦→0 lim π‘₯β†’βˆ’βˆž 𝑓 π‘₯ =0 lim π‘₯β†’βˆž 𝑓 π‘₯ =0 𝐴𝑠 π‘₯β†’ 0 βˆ’ , π‘¦β†’βˆ’βˆž lim π‘₯β†’ 0 βˆ’ 𝑓 π‘₯ =βˆ’βˆž

16 2.6 – Limits Involving Infinity; Asymptotes of Graphs
𝐻.𝐴. π‘Žπ‘‘ 𝑦=5 𝐻.𝐴. π‘Žπ‘‘ 𝑦=0 𝑉.𝐴. π‘Žπ‘‘ π‘₯=4 lim π‘₯β†’βˆž 𝑓 π‘₯ =βˆ’2 lim π‘₯β†’ 𝑓 π‘₯ =∞ lim π‘₯β†’ βˆ’7 + 𝑓 π‘₯ =∞ 𝐻.𝐴. π‘Žπ‘‘ 𝑦=βˆ’2 𝑉.𝐴. π‘Žπ‘‘ π‘₯=2 𝑉.𝐴. π‘Žπ‘‘ π‘₯=βˆ’7

17 2.6 – Limits Involving Infinity; Asymptotes of Graphs

18 2.6 – Limits Involving Infinity; Asymptotes of Graphs
Examples

19 2.6 – Limits Involving Infinity; Asymptotes of Graphs
Oblique Asymptotes


Download ppt "2.5 – Continuity A continuous function is one that can be plotted without the plot being broken. Is the graph of f(x) a continuous function on the interval."

Similar presentations


Ads by Google