Download presentation
Presentation is loading. Please wait.
Published byCharleen Mitchell Modified over 9 years ago
1
ROTATIONALLY RESOLVED A 2 A 1 —X 2 E ELECTRONIC SPECTRA OF DEUTERATED ISOTOPOMERS OF THE METHOXY RADICAL Jinjun Liu, Ming-Wei Chen and Terry A. Miller Laser Spectroscopy Facility Department of Chemistry The Ohio State University 6/21/2007 ~ ~
2
Outline Talk II (RF02): CHD 2 O Introduction: asymmetric deuteration Theory: PES, effective Hamiltonian Experimental setup and spectral result Global fitting and molecular constants Discussion: lifting of vibronic degeneracy Summary and future work Talk II (RF02): CHD 2 O Introduction: asymmetric deuteration Theory: PES, effective Hamiltonian Experimental setup and spectral result Global fitting and molecular constants Discussion: lifting of vibronic degeneracy Summary and future work Talk I (RF01): CH 3 O
3
Asymmetric Deuteration Introduces asymmetries in the PES Reduces the symmetry of the normal vibrations without affecting the electronic symmetry properties Helpful in the investigation of systems that are subject to vibronic coupling (e.g., Jahn-Teller effect ) by “decoupling” the correlation between electronic and nuclear dynamics: lifts the vibronic degeneracy through ZPE effects reveals the geometry distortion in the case of dynamic Jahn-Teller distortion decouples the Jahn-Teller effect and spin-orbit interaction Reduces the permutational symmetry Helpful in understanding the properties of molecules performing large-amplitude motions (tunneling/free rotation) Introduces asymmetries in the PES Reduces the symmetry of the normal vibrations without affecting the electronic symmetry properties Helpful in the investigation of systems that are subject to vibronic coupling (e.g., Jahn-Teller effect ) by “decoupling” the correlation between electronic and nuclear dynamics: lifts the vibronic degeneracy through ZPE effects reveals the geometry distortion in the case of dynamic Jahn-Teller distortion decouples the Jahn-Teller effect and spin-orbit interaction Reduces the permutational symmetry Helpful in understanding the properties of molecules performing large-amplitude motions (tunneling/free rotation)
4
Asymmetric Deuteration: A Chronicle 1964 : ESR of Jahn-Teller related molecules [1] Benzene anion (C 6 H 5 D - ): different spectra after single deuteration Cyclo-octatetraene anion (C 8 H 7 D - ): no difference 1964-: ESR of matrix-isolated molecules 1982 : Optical spectroscopy of benzene in gas phase [2] Direct measurement of the splitting of the degenerate states 1993 : Rotationally resolved LIF spectra of asymmetrically deuterated cyclopentadienyl (C 5 H 4 D, C 5 HD 4 ) [3] Two vibronic bands (ΔE~±9cm -1 ) showing the lifting of the vibronic degeneracy Rotational analysis of the split states revealing different symmetry and geometry of the two split states 2007 : Rotationally resolved PFI-ZEKE spectra of asymmetrically deuterated methane cation (CH 3 D +, CHD 3 + ) [4] Isotopic isomers Tunneling-free pseudorotation structure 1964 : ESR of Jahn-Teller related molecules [1] Benzene anion (C 6 H 5 D - ): different spectra after single deuteration Cyclo-octatetraene anion (C 8 H 7 D - ): no difference 1964-: ESR of matrix-isolated molecules 1982 : Optical spectroscopy of benzene in gas phase [2] Direct measurement of the splitting of the degenerate states 1993 : Rotationally resolved LIF spectra of asymmetrically deuterated cyclopentadienyl (C 5 H 4 D, C 5 HD 4 ) [3] Two vibronic bands (ΔE~±9cm -1 ) showing the lifting of the vibronic degeneracy Rotational analysis of the split states revealing different symmetry and geometry of the two split states 2007 : Rotationally resolved PFI-ZEKE spectra of asymmetrically deuterated methane cation (CH 3 D +, CHD 3 + ) [4] Isotopic isomers Tunneling-free pseudorotation structure [1] A. Carrington, H. C. Longuet-Higgins, R. E. Moss, P. F. Todd, Mol. Phys. 9, 187 (1965) [2] B. Sharf, R. Vitenberg, B. Katz, Y. Band, J. Chem. Phys. 77, 2226 (1982) [3] L. Yu, D. W. Cullin, J. M. Williamson, T. A. Miller, J. Chem. Phys. 98, 2682 (1993) [4] H. J. Wörner and F. Merkt, J. Chem. Phys. 126, 154304 (2007)
5
Spectral Evidence of Lifting of Degeneracy LIF spectra of C 5 HD 4 (T~10K) b-type a-type
6
Lifting of Vibronic Degeneracy: a qualitative view C O H CsCs A’ D D C O H CsCs A” H H C 3v E D D
7
Lifting of Vibronic Degeneracy: a qualitative view C O H CsCs |A”> state C O H CsCs |A’> state C O H H CsCs |A”> state C O CsCs |A’> state H H D D
8
PES Normal JT (linear only) JT w/ SO (CH 3 O, CD 3 O) JT w/ SO & asym. deuteration (CH 2 DO, CHD 2 O)
9
PES Normal JT (linear only) JT w/ SO (CH 3 O, CD 3 O) JT w/ SO & asym. deuteration (CH 2 DO, CHD 2 O)
10
PES
11
* A. V. Marenich, J. E. Boggsa, J. Chem. Phys. 122, 024308 (2005) Methoxy: when (dynamic) JT meets spin-orbit PES of X 2 E CH 3 O calculated (a) without and (b) with spin-orbit coupling for the normal vibrational mode v 6. * ~ -- RF01
12
CH 3 O and CD 3 O: H EFF = H ROT + H COR + H SO + H SR + H JT + H CD Effective Hamiltonian: ground state CH 2 DO and CHD 2 O: Reduction of molecular symmetry (C 3v C s ): H ROT, sym H ROT, asym (B-C)/2 H COR, sym H COR, asym θ H SO, sym H SO, asym θ H SR, sym H SR, asym ε ac, (ε bb -ε cc )/2 Removal of electronic degeneracy of the vibrationless level: + H Q or * D. Melnik, J. Liu, R. F. Curl, T. A. Miller, Mol. Phys. 105, 529 (2007) Δ E=E x (A ’ )-E y (A ” ) with CH 2 DO CHD 2 O Principal Axis Sys. Internal Axis Sys.
13
Hamiltonian Elements, asym. terms Lifting of vibronic degeneracy Rotational Coriolis Spin-orbit Spin-rotation *
14
Experimental Apparatus: LIF & SEP, hi & mod. res. CH 2 DONO/ CHD 2 ONO/ CD 3 ONO+ 1 st run Ne General Valve ControllerDG535 Pulse Generator XeF Excimer Laser XeCl Excimer Laser Ar + Laser Nd:YAG Laser Sirah Dye Laser Pulsed Dye Amplifier PC #1 PC #2 Nozzle Ring Laser T0T0 PMT SHG Frequency reading Photolysis Q-Switch Flash Lamp T 0 / GPIB T0T0 program synchronizing Lens
15
Experimental Simulation CHD 2 O, 3 2 0 Band
16
Experimental Simulation CHD 2 O, 3 2 0 Band
17
Accomplishment and Drawback Global fitting of mw * and LIF (two rotationally resolved vibronic bands: ) spectra for CHD 2 O and CH 2 DO with standard deviation consistent with the experimental accuracy (<3MHz for mw and ~50MHz for LIF). Vibronic degeneracy is lifted by the asymmetric deuteration ΔE at the same order of magnitude as aξ e d (50-60cm -1 ) but different sign for CHD 2 O (+) and CH 2 DO (-) Validity of the Hamiltonian Combined fitting of LIF spectra (two bands) for CD 3 O. Global fitting of mw * and LIF (two rotationally resolved vibronic bands: ) spectra for CHD 2 O and CH 2 DO with standard deviation consistent with the experimental accuracy (<3MHz for mw and ~50MHz for LIF). Vibronic degeneracy is lifted by the asymmetric deuteration ΔE at the same order of magnitude as aξ e d (50-60cm -1 ) but different sign for CHD 2 O (+) and CH 2 DO (-) Validity of the Hamiltonian Combined fitting of LIF spectra (two bands) for CD 3 O. The upper component of the spin-orbit splitting (E 1/2 ) is accessible to neither of the experiment (mw and LIF, T~3K) ΔE and aξ e d can not be well-determined for CHD 2 O and CH 2 DO due to the strong correlation between them ( ) and lack of information of the E 1/2 state The upper component of the spin-orbit splitting (E 1/2 ) is accessible to neither of the experiment (mw and LIF, T~3K) ΔE and aξ e d can not be well-determined for CHD 2 O and CH 2 DO due to the strong correlation between them ( ) and lack of information of the E 1/2 state * D. Melnik, V. Stakhursky, V. A. Lozovsky, T. A. Miller, C. B. Moore and F. C. De Lucia, WJ09, 59th International Symposium on Molecular Spectroscopy, 2004.
18
SEP experiment of CHD 2 O: pump transitions LIF
19
SEP experiment of CHD 2 O: dump transitions LIF SEP
20
SEP experiment of CHD 2 O: List of transitions *Too weak to be observed in the high-resolution SEP experiment. Pump transitionPump freq. Dump transitionDump freq. Obs.Cal.Cal.–Obs. |J’,N’,K’,p’> - |J”,K",Σ”,p”>(cm -1 )|J’,N’, K, p’> - |J, K, Σ, p>(cm -1 ) P a |1/2, 1, 1, -1> - |1/2, 0, 1/2, 1> |3/2, 1, 1, -1> - |1/2, 0, 1/2, 1> 32929.48 |3/2, 1, 1, -1> - |5/2, 2, -1/2, 1>32842.2258 32842.22510.0007 |1/2, 1, 1, -1> - |3/2, 2, -1/2, 1> 32845.490732845.49000.0007 |3/2, 1, 1, -1> - |3/2, 2, -1/2, 1> * |1/2, 1, 1, -1> - |3/2, 0, -1/2, 1> * |3/2, 1, 1, -1> - |3/2, 0, -1/2, 1> 32855.542932855.5472-0.0043 |1/2, 1, 1, -1> - |1/2, 0, -1/2, 1>32856.4708 32856.46900.0018 |3/2, 1, 1, -1> - |1/2, 0, -1/2, 1>32856.4806 32856.47780.0028 P b |1/2, 0, -1, 1> - |1/2, 0, 1/2, -1> 32928.47 |1/2, 0, -1, 1> - |3/2, 2, -1/2, -1>32845.4461 32845.4474-0.0013 |1/2, 0, -1, 1> - |3/2, 0, -1/2, -1> * |1/2, 0, -1, 1> - |1/2, 0, -1/2, -1> *
21
Global Fitting: mw, LIF & SEP A 3.1735 (14) (B+C)/2 0.79001 (24) Aζ t 0.997 (10) D k, D NK, D N,η e ζ t, η K ζ t 0 c aζ e d -53.44 (50) aDζ e d 0.0364 (38) ε aa -0.8686 (58) ε bc 0.130 (16) ε1ε1 0.0019 (16) ε 2a -0.0438 (45) ε 2b -0.0109 d h1h1 -0.00033 (36) h2h2 0.1212 (47) h 1K - 0.000591 (65) h 2K -0.00579 (40) h 1N, h 2N, h 4 0 c ΔEΔE -48.30 (55) (B-C)/20.02297 (24) θ tilt -1.94 (17) ε ab, ε ab_asym 0 c a. In cm -1, b. 2.5σ in parentheses c. fixed d.fixed to ε 2a *(B+C)/2A Rotational Spin-Orbit Coriolis Centrifugal Distortion Spin-Rotation Jahn-Teller Asym.
22
ΔE=E x (A’)-E y (A”): Principal Axis Sys. Internal Axis Sys. Δ E=E b (A ’ )-E c (A ” ) = +45.09(468)cm -1 Δ E=E c (A ’ )-E b (A ” ) = -48.30(55)cm -1 Ab initio * : -47cm -1 * B3LYP/6-31+G(d,p) Freq=ReadIsotopes * Not scaled * C s geometry from: A. V. Marenich, J. E. Boggs, J. Mol. Structure, 780, 163 (2006) Ab initio * : 43cm -1 E b (A ” )>E c (A ’ ) E b (A ’ )>E c (A ” ) “mass dependent” CH 2 DO CHD 2 O θ<5 o
23
Spin-orbit splitting aξ e d CH 3 OCHD 2 OCH 2 DOCD 3 O 13 CH 3 O -61.43(9) [1] -53.44(50) [2] -82.86(4051) [2] -55.30(10) [3] -62.20(3) [4] [1] J. Liu, M. Chen, J. Yi, T. A. Miller, to be submitted [2] this work [3] T. Momose, private communication [4] T. Momose, Y. Endo, E. Hirota, T. Shida, J. Chem. Phys. 88, 5338 (1988) * 2.5σin the parentheses SO coupling Constant Electron angular momentum along z-axis a = -142.8 aξe = -134 Ham reduction /JT quenching factor
24
Summary and Future Work New high-resolution SEP spectra of CHD 2 O, which connects the and states. Correlation between now broken Molecular constants for ground electronic state from the global fitting (mw, LIF, and SEP) New high-resolution SEP spectra of CHD 2 O, which connects the and states. Correlation between now broken Molecular constants for ground electronic state from the global fitting (mw, LIF, and SEP) SEP spectra of CH 2 DO and CD 3 O Vibronic analysis involving dispersed fluorescence spectra of CHD 2 O Quantitative analysis and comparison SEP spectra of CH 2 DO and CD 3 O Vibronic analysis involving dispersed fluorescence spectra of CHD 2 O Quantitative analysis and comparison
25
Acknowledgement Miller Group GOES @ OSU Merkt Group XUV @ ETH Thank You! $NSF$ Robert Curl
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.