Download presentation
Presentation is loading. Please wait.
Published byDarcy Kelley Park Modified over 9 years ago
1
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv:0910.1139 Reviews: Talk online: sachdev.physics.harvard.edu arXiv:0901.4103
2
Frederik Denef, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Dam Son, Washington Frederik Denef, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Dam Son, Washington Max Metlitski, Harvard HARVARD
3
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT 3. Quantum criticality of Fermi surfaces The genus expansion
4
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT 3. Quantum criticality of Fermi surfaces The genus expansion
5
The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
6
M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Superfluid-insulator transition
7
Cheng Chin James Franck institute Physics Department Chicago University Having your cake and seeing it too - Exploring quantum criticality and critical dynamics in ultracold atomic gases
8
Insulator (the vacuum) at large U
9
Excitations:
11
Excitations of the insulator:
13
CFT3
15
Classical vortices and wave oscillations of the condensate Dilute Boltzmann/Landau gas of particle and holes
16
CFT at T>0
17
D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 62, 2180 (1989) Resistivity of Bi films M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)
18
Quantum critical transport S. Sachdev, Quantum Phase Transitions, Cambridge (1999).
19
Quantum critical transport K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
20
Quantum critical transport P. Kovtun, D. T. Son, and A. Starinets, Phys. Rev. Lett. 94, 11601 (2005), 8714 (1997).
21
Quantum critical transport
24
Density correlations in CFTs at T >0
26
Conformal mapping of plane to cylinder with circumference 1/T
28
Density correlations in CFTs at T >0 No hydrodynamics in CFT2s.
29
Density correlations in CFTs at T >0
30
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
31
Density correlations in CFTs at T >0 K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
32
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT 3. Quantum criticality of Fermi surfaces The genus expansion
33
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT 3. Quantum criticality of Fermi surfaces The genus expansion
45
P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007) Collisionless to hydrodynamic crossover of SYM3
46
P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007) Collisionless to hydrodynamic crossover of SYM3
47
Universal constants of SYM3 P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007) C. Herzog, JHEP 0212, 026 (2002)
48
Electromagnetic self-duality
49
C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981)
51
Electromagnetic self-duality
53
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT 3. Quantum criticality of Fermi surfaces The genus expansion
54
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT 3. Quantum criticality of Fermi surfaces The genus expansion
55
Theory of quantum criticality in the cuprates
57
Nematic order in YBCO V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, and B. Keimer, Science 319, 597 (2008)
58
Nematic order in YBCO V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, and B. Keimer, Science 319, 597 (2008)
59
Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor R. DaouR. Daou, J. Chang, David LeBoeuf, Olivier Cyr-Choiniere, Francis Laliberte, Nicolas Doiron-Leyraud, B. J. Ramshaw, Ruixing Liang,g, DavidOlivier Cyr-Cis Laliberte, NicolasRamshaw, Ruixing D. A. Bonn, W. N. Hardy, and Louis Taillefer W. N. Hardy, and Lou arXiv: 0909.4430.4430 S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998).
60
“Large” Fermi surfaces in cuprates Hole states occupied Electron states occupied
61
Quantum criticality of Pomeranchuk instability x y
62
Electron Green’s function in Fermi liquid (T=0)
64
Quantum criticality of Pomeranchuk instability x y
65
x y
66
x y
68
Quantum critical
69
Quantum criticality of Pomeranchuk instability Quantum critical Classical d=2 Ising criticality
70
Quantum criticality of Pomeranchuk instability Quantum critical D=2+1 Ising criticality ?
71
Quantum criticality of Pomeranchuk instability
76
Hertz theory
77
Quantum criticality of Pomeranchuk instability Hertz theory
78
Quantum criticality of Pomeranchuk instability Sung-Sik Lee, Physical Review B 80, 165102 (2009)
79
Quantum criticality of Pomeranchuk instability A string theory for the Fermi surface ?
83
AdS 4 -Reissner-Nordstrom black hole
84
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788 Examine free energy and Green’s function of a probe particle
85
Short time behavior depends upon conformal AdS 4 geometry near boundary T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788
86
Long time behavior depends upon near-horizon geometry of black hole T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788
87
Radial direction of gravity theory is measure of energy scale in CFT T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788
88
AdS 4 -Reissner-Nordstrom black hole
89
AdS 2 x R 2 near-horizon geometry
90
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 Infrared physics of Fermi surface is linked to the near horizon AdS 2 geometry of Reissner-Nordstrom black hole
91
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 AdS 4 Geometric interpretation of RG flow
92
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 AdS 2 x R 2 Geometric interpretation of RG flow
93
Green’s function of a fermion T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 See also M. Cubrovic, J Zaanen, and K. Schalm, arXiv:0904.1993
94
Green’s function of a fermion T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 Similar to non-Fermi liquid theories of Fermi surfaces coupled to gauge fields, and at quantum critical points
95
General theory of finite temperature dynamics and transport near quantum critical points, with applications to antiferromagnets, graphene, and superconductors Conclusions
96
The AdS/CFT offers promise in providing a new understanding of strongly interacting quantum matter at non-zero density Conclusions
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.